
Active control systems

Spacecraft Dynamics
Lesson 8: Active Attitude Control

Rafael Vázquez Valenzuela

Departamento de Ingenieŕıa Aeroespacial
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Active control systems

Passive control systems can allow for some perturbation
rejection and give stability enough for some applications.

However, particularly at the beginning of a mission, all
spacecraft need to perform:

Slew maneuvers
Adjustments of spin speed
Stationkeeping maneuvers

Thus, in many cases, one needs an active control systems
(active in the sense of requiring additional energy to work as
well as some kind of logic).

In missions requiring high accuracies, that active control
system will be the primary system. Then, one speaks about
three-axis stabilized attitude control.

In other cases, it may be a secondary system, which only
requires occasional use.

2 / 40



Active control systems
Momentum exchange systems
Reaction Control Systems

Actuators

Before explaining the algorithms for attitude control, it is
important to quickly review the actuators that are used to
modify the attitude of a spacecraft (through some term in
Euler’s equations). The different types of actuators are:

Thrusters: based on expelling mass. Since mass is finite these
devices have limited use. Known as Reaction Control Systems.
Reaction wheels and inertia wheels, with changing angular
speeds, as seen in Lesson 5.
Control Moment Gyroscopes (CMG): they are as inertia wheels
(a disc-like device spinning at large speeds), which, instead of
modifying their angular speeds, tilt their axis of rotation
through motorized gimbals, thus quickly modifying their
angular momentum.
Magnetorquers, which use the magnetic field to produce a
torque.
Structural elements for passive control: booms, yo-yo devices,
nutation dampers... not covered here.

It is normal to have several kind of actuators in a spacecraft
for redundancy and given that they have different properties. 3 / 40
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Three-axis stabilized attitude control

Satellites with three-axis stabilized attitude control can have
any kind of pointing (inertial, orbital, some ground target...)
Objectives may be two: either to keep the satellite (in the
presence of perturbations) in a fixed attitude (a simple
regulation/stabilization problem) or to perform a slew
maneuver (which maybe to track a target or just modifying
the attitude).
There are two main families of actuators to achieve these
goals: reaction/inertia wheels /CMGs (also known as
momentum exchange systems) and RCS. Magnetorquers can
also partially perform this but it is a bit more difficult due to a
direction without actuation: we will not consider them.
We will start with the first goal, since the second is more
difficult, for both reaction/inertia wheels and RCS.
How to perform slew maneuvers will also be consider but only
for reaction/inertia wheels.

4 / 40



Active control systems
Momentum exchange systems
Reaction Control Systems

Momentum exchange systems

For the highest degree of precision
in attitude, manoeuvrability and
stabilization, and for any
orientation independent of the
inertia tensor, one can use
momentum exchange systems
which use reaction wheels, inertia
wheels and/or CMGs, based on
conservation of angular
momentum.

Nevertheless these are expensive
system, with low tolerance to
failures, and require an auxiliary
system (thruster or magnetorquers)
to unload momentum and thus
avoid saturation.
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2. Sistemas de Control Activo

Dinámica y Control de la Actitud

2. Sistemas de Intercambio de Momento Angular

Otro ejemplo:
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Spacraft with three reaction wheels
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Fig. 6.10 Gyrostat in a circular orbit.

The rotational equation of motion is then simply given by

!̇H =
{

d !H
dt

}

B
+ !ωB/N × !H = !M (6.170)

where !M is the gravity-gradient torque acting on the vehicle. For the principal-axis
frame B, the equations of motion can be written as

J1ω̇1 − (J2 − J3)ω2ω3 + ḣ1 + ω2h3 − ω3(−H0 + h2) = M1 (6.171a)

J2ω̇2 − (J3 − J1)ω3ω1 + ḣ2 + ω3h1 − ω1h3 = M2 (6.171b)

J3ω̇3 − (J1 − J2)ω1ω2 + ḣ3 + ω1(−H0 + h2) − ω2h1 = M3 (6.171c)

where Mi = !M · !bi.
For small relative angles between B and A, we have

ω1 = θ̇1 − nθ3 (6.172a)

ω2 = θ̇2 − n (6.172b)

ω3 = θ̇3 + nθ1 (6.172c)

and

M1 = −3n2(J2 − J3)θ1 (6.173a)

M2 = 3n2(J3 − J1)θ2 (6.173b)

M3 = 0 (6.173c)

where n is the orbital rate and θ1, θ2, and θ3 are called the roll, pitch, and yaw
attitude angles of the spacecraft relative to the LVLH reference frame A.

Assume the situation in the figure, with three reaction wheels
in the three principal axes:

I1ω̇1 + (I3 − I2)ω2ω3 + ḣ1 + ω2h3 − ω3h2 = M1

I2ω̇2 + (I1 − I3)ω1ω3 + ḣ2 + ω3h1 − ω1h3 = M2

I3ω̇3 + (I2 − I1)ω2ω1 + ḣ3 − ω2h1 + ω1h2 = M3

The angular momentum of wheels is denoted as hi = ωRi
IRi

.
These are control variables!
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Spacraft with three reaction wheels
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Fig. 6.10 Gyrostat in a circular orbit.

The rotational equation of motion is then simply given by

!̇H =
{

d !H
dt

}

B
+ !ωB/N × !H = !M (6.170)

where !M is the gravity-gradient torque acting on the vehicle. For the principal-axis
frame B, the equations of motion can be written as

J1ω̇1 − (J2 − J3)ω2ω3 + ḣ1 + ω2h3 − ω3(−H0 + h2) = M1 (6.171a)

J2ω̇2 − (J3 − J1)ω3ω1 + ḣ2 + ω3h1 − ω1h3 = M2 (6.171b)

J3ω̇3 − (J1 − J2)ω1ω2 + ḣ3 + ω1(−H0 + h2) − ω2h1 = M3 (6.171c)

where Mi = !M · !bi.
For small relative angles between B and A, we have

ω1 = θ̇1 − nθ3 (6.172a)

ω2 = θ̇2 − n (6.172b)

ω3 = θ̇3 + nθ1 (6.172c)

and

M1 = −3n2(J2 − J3)θ1 (6.173a)

M2 = 3n2(J3 − J1)θ2 (6.173b)

M3 = 0 (6.173c)

where n is the orbital rate and θ1, θ2, and θ3 are called the roll, pitch, and yaw
attitude angles of the spacecraft relative to the LVLH reference frame A.

Remember also from Lesson 5 that once we know the speed
we need for the wheels, it can be achieved by using the
wheels’ internal electrical motors.
The model from Lesson 5 was:

IR1ω̇1 + ḣ1 = J1

IR2ω̇2 + ḣ2 = J3

IR3ω̇3 + ḣ3 = J3

where Ji is the torque of the electrical motors. This is in the
end what we can really actuate directly. 7 / 40
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Spacecraft with three reaction wheels

Let us now use a nomenclature in which we denote the effect
of the wheels with the letter u by following the classical
control nomenclature:

I1ω̇1 + (I3 − I2)ω2ω3 = u1 + M1

I2ω̇2 + (I1 − I3)ω1ω3 = u2 + M2

I3ω̇3 + (I2 − I1)ω2ω1 = u3 + M3

where

u1 = −ḣ1 − ω2h3 + ω3h2

u2 = −ḣ2 − ω3h1 + ω1h3

u3 = −ḣ3 − ω1h2 + ω2h1

This is, ~u = −~̇h + ~h×~ω

In addition we have the kinematic differential equation

q̇ =
1

2
q ? q~ω
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Regulation: Stabilizing a given attitude

For regulation of a fixed attitude, the problem is stabilizing
the values q(t) = qref and ω(t) = 0. In addition, we assume
that we initially start close to that value of the state.

Thus, we linearize Euler’s equations around ω(t) = 0. Ignoring
perturbing torques (Question: what could we try to do to
mitigate perturbing torques?):

d

dt

 δω1

δω2

δω3

 =

 0 0 0
0 0 0
0 0 0

 δω1

δω2

δω3

+

 1/I1 0 0
0 1/I2 0
0 0 1/I3

 u1

u2

u3


where ~u = −~̇h + ~h×δ~ω

Notice that if we find ~u solving the control problem, we could
find the corresponding values of ~h by solving the differential
equation (however: physical limitations, such as saturations or
rate limits could pose a problem).
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Stabilization

On the other hand, the attitude quaternion should be close to
the reference attitude (if we start close to the attitude qref ).
By following Lesson 2, then we can write q = qref ? δq, where
qref is the desired attitude and δq the attitude quaternion:

δq(~a) =
1√

4 + ‖~a‖2

[
2
~a

]
From Lesson 4 the relationship between ~a and the angular
velocity is ~̇a ≈ δ~ω + ~a× ~ωref , since ~ωref = ~0 → ~̇a ≈ δ~ω.
Thus:

d

dt

 a1

a2

a3

 =

 1 0 0
0 1 0
0 0 1

 δω1

δω2

δω3


Combining the equations for the error in angular velocity and
attitude we find a full description of the error of the system, in
the next slide.
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Stabilization

System description:

d

dt


δω1
δω2
δω3
a1
a2
a3

 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




δω1
δω2
δω3
a1
a2
a3

 +


1/I1 0 0

0 1/I2 0
0 0 1/I3
0 0 0
0 0 0
0 0 0


 u1

u2
u3



Call ~x to the variables describing the state, this is a classical
way to write a linear system

~̇x = A~x + B~u

We can use “our favorite linear method” to find a (linear)
control law ~u = K~x , which then later one needs to transform
in required velocities for the wheels by solving the angular
speed that relates ~u with the angular momentum of the
wheels, and then later transform that into commands for the
wheels’ motors.
A possible method is LQR (linear quadratic regulator) with
“infinite horizon”. Another is pole placement. 11 / 40
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The LQR method
Given

~̇x = A~x + B~u

find a control law ~u(t) (with feedback: ~u = K~x) minimizing:

J =

∫ ∞
0

(~xT (t)Q~x(t) + ~uT (t)R~u(t))dt

Problem posed and solved first by Rudolph Kalman!
Assumptions: Q,R symmetrical and Q > 0 (definite
semidefinite positive, which is equivalent to all eigenvalues
positive) and R ≥ 0 (semidefinite positive, which is equivalent
to all eigenvalues non-negative).
Additional assumption: The system is“controlable”. Meaning
that “is is possible to solve the problem” (it is easy to solve
control problems that cannot be solved. For instance
ẋ1 = u1, ẋ2 = x2.) Mathematically a problem is controllable if
C = [B AB A2B An−1B] is full row rank, where n is the
number of states. Is this verified in our case?
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The LQR method
The control law that solves the problem is

~u = K~x

where the gain K is found as follows
1 Find the matrix P that solve the so-called “algebraic Riccati

equation”:

Q + ATP + PA− PBR−1BTP = 0

for instance with the Matlab command “are” (which requires
the Control Systems Toolbox) P=are(A,B*inv(R)*B’,Q);

2 The gain is then K = −R−1BTP

The Riccati equation is solvable only if the system is
controllable.
Optimal control should guarantee a good behavior of the
system, but does not take into account the actuator’s
saturation or other nonlinear behavior. The choice of Q and R
greatly influences the quality of the controller (more
conservative or more aggresive).
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The LQR method

To implement a control law

~u = K~x

let us first remember the definition of ~x .

As ~ωref = ~0, the first three components are the real value of
angular speed.

The next three components are ~a, from which one extracts
the quaternion error. It is easy to see that

~a = 2
δ~q

δq0

which comes from δq = q∗ref ? q(t).

Once the control ~u is computed, one needs to solve
~̇h = −~u + ~h×δ~ω to find out how to solve the angular
momentum of the wheels.
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Slew maneuvers and tracking

We have studied in Lessons 2 and 4 how to compute a given
angular velocity to maneuver from a given attitude to another.

Remember that, given qi and qf and a certain time T it was
required to find qR = q∗i ? qf , extract Euler’s axis ~e and angle

θ, and then ~ω = ~eω(t), where ω needs to verify
∫ T

0 ω(τ)dτ .

In addition, we can impose additional conditions such as
starting and finishing at rest, for instance by imposing a shape
to ω(t) of the form ω(t) = At(t − T ) (Exercise: find A).
Other conditions could be imposed.

Once we find the required angular velocity, if we substitute it
in Euler’s equation we can find the control. This is sometimes
called “open loop control” or feedforward control, and does
not use feedback.
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Slew maneuvers and tracking

If we call the found angular velocity ~ωref (t), and the
quaternion generated by that angular speed the reference
quaternion qref (t), we can also find a “reference control”
(feedforward control) ~uref as:

uref 1 = I1ω̇ref 1 + (I3 − I2)ωref 2ωref 3

uref 2 = I2ω̇ref 2 + (I1 − I3)ωref 3ωref 1

uref 3 = I3ω̇ref 3 + (I2 − I1)ωref 1ωref 2

As before from this ~uref we can find the required speed of the
wheels and from that speed of the wheels, the internal
electrical motors’ torque that would be needed to perform the
maneuver.

What would happen if we try just to apply this feedforward
control without any feedback mechanism?

The problem of following the reference profile ~ωref (t),qref (t)
is sometimes called the tracking problem.
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Tracking

One possible idea to solve tracking is as follows: linearize
around the reference profile. Compute an additional feedback
controller around the reference profile that is added to the
feedforward control (so we have feedforward+feedback) so we
close the loop and guarantee stability (at least with respect to
small errors and perturbations) so that the system is kept on
the desired reference profile.
Thus let δ~ω = ~ω− ~ωref , δ~u = ~u− ~uref , and use the quaternion
error as previously defined. The linearized equations are:

I1δω̇1 + (I3 − I2)(ωref 2δω3 + δω2ωref 3) = δu1 + M1

I2δω̇2 + (I1 − I3)(ωref 3δω1 + δω3ωref 1) = δu2 + M2

I3δω̇3 + (I2 − I1)(ωref 1δω2 + δω1ωref 2) = δu3 + M3

and for the attitude error:

~̇a ≈ δ~ω − ~ω×ref ~a
17 / 40
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Tracking

System description ignoring perturbing torques:

d

dt


δω1
δω2
δω3
a1
a2
a3

 =



0
I2−I3

I1
ωref 3

I2−I3
I1

ωref 2 0 0 0

I3−I1
I2

ωref 3 0
I3−I1

I2
ωref 1 0 0 0

I1−I2
I3

ωref 2
I1−I2

I3
ωref 1 0 0 0 0

1 0 0 0 ωref 3 −ωref 2
0 1 0 −ωref 3 0 ωref 1
0 0 1 ωref 2 −ωref 1 0




δω1
δω2
δω3
a1
a2
a3



+


1/I1 0 0

0 1/I2 0
0 0 1/I3
0 0 0
0 0 0
0 0 0


 δu1
δu2
δu3



Classical description as before

~̇x = A(t)~x + B(t)δ~u

Now A and B are time-varying: cannot use the LQR method
as before.
We need more advanced methods, such as LQR (linear
quadratic regulator) with “finite horizon”.
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Tracking with finite horizon LQR

Given
~̇x = A(t)~x + B(t)δ~u

find δ~u(t) with feedback (δ~u(t) = K (t)~x) minimizing

J =

∫ T

0
(~xT (t)Q(t)~x(t)+δ~uT (t)R(t)δ~u(t))dt+~xT (T )Qend~x(T )

Assumptions: Q,R,Qend symmetric and Qend ,Q > 0,R ≥ 0.

Since it is a finite horizon controller, the controllability
hypothesis is not required, but there could be problems if
there is a loss of controllability of the system.
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Tracking with finite horizon LQR

The control law that minimizes J is as follows:

δ~u = K (t)~x

where the gain K (t) is found as follows:
1 Find P(t) that solved the so-called “Riccati differential

equation”:

−Ṗ = ATP + PA− PBR−1BTP + Q, P(T ) = Qend

for instance using ode45 in Matlab.
2 The gain is then K (t) = −R−1BTP(t)

Riccati’s differential equation is always solvable! However, it
cannot be solved in real time, because it needs to be solved
backwards in time (there is a final condition instead of an
initial condition). Thus one solves it in advance and stores the
values of K (t).

As before: Choices of Q and R (also Qend) determines the
quality of the controller (more conservative or more aggresive).
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Tracking with finite horizon LQR

To implement the control law

δ~u = K (t)~x

one needs to remember the definition of ~x .

As ~ωref 6= ~0, the first three components are ~ω − ~ωref .

The second three components correspond to ~a, that need to
be extracted from the quaternion error. Remember that

~a = 2
δ~q

δq0

for which we need to compute δq = q∗ref ? q(t).

The final control is ~u = ~uref + δ~u.

Remember that once ~u is known, at each instant is required

to solve ~̇h = −~u + ~h×δ~ω to know how to modify the angular
momentum of the wheels and therefore their internal torque
Ji .
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Nonlinear control

“Nonlinear control” comprises a wide range of techniques that
do not require the use of linearization.

Consider the following problem. Starting from ~ω(0) and q(0)
we want to reach the identity attitude at rest. It is enough for
us if the system “tends” to that state, this is, our goal is that
~ω(t)→ ~0 y q0(t)→ 1, ~q(t)→ ~0 when t →∞.

This is, we make “asymptotically stable” the equilibrium
~ω = ~0, q0 = 1, ~q = ~0.

If this is true, for any initial condition, then one says that the
equilibrium is globally asymptotically stable.

Notice that the target attitude could be any, just by making a
rotation of the inertial frame as q′ = q∗ref ? q.

We solve this problem with the so-called “Lyapunov function
technique”.
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Nonlinear control

Let us start by remembering than since we don’t linearize,
now our system is the original one, writing as before the
control terms in the equations.

First, the angular velocity equations:

ω̇1 =
I2 − I3
I1

ω2ω3 +
u1

I1

ω̇2 =
I3 − I1
I2

ω3ω1 +
u2

I2

ω̇3 =
I1 − I2
I3

ω1ω2 +
u3

I3
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Nonlinear control: Lyapunov functions

Can we find u1, u2 and u3 such that the equilibirum ~ω = ~0 is
globally asymptotically stable?

The technique of Lyapunov functions is as follows. Let V be a
regular function (continuous, differentiable) that depends on
the state (in this case, the angular velocity and quaternions)
such that :

It is always positive for any value of the states, except when the
state is zero; and for zero, it is zero (this is, positive definite).
The time derivative of V is definite negative (this is, negative
for any value of the state except zero).

Then it follows that the origin (zero value of the state) is
asymptotically stable (this method can be understood by
looking at the level curves of V ).

If in addition the limit of V when the state goes to infinity
also tends to infinity, the result is global.
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Nonlinear control: Lyapunov functions
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the state (in this case, the angular velocity and quaternions)
such that :

It is always positive for any value of the states, except when the
state is zero; and for zero, it is zero (this is, positive definite).
The time derivative of V is definite negative (this is, negative
for any value of the state except zero).

Then it follows that the origin (zero value of the state) is
asymptotically stable (this method can be understood by
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Nonlinear control: Lyapunov functions

Let us see how this works out for our first case with only
angular velocity. Consider:

V = I1
ω2

1

2k
+ I2

ω2
2

2k
+ I3

ω2
3

2k

We see that the first conditions is fulfilled if k is a positive
constant (we will define it later).

Taking derivative:

Vt = I1
ω1ω̇1

k
+ I2

ω2ω̇2

k
+ I3

ω3ω̇3

k

Substituting the derivatives:

Vt =
ω1((I2 − I3)ω2ω3 + u1)

k
+
ω2((I3 − I1)ω3ω1 + u2)

k
+
ω3((I1 − I2)ω1ω2 + u3)

k
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Nonlinear control: finding the control

Simplifying

Vt =
ω1u1

k
+
ω2u2

k
+
ω3u3

k

Let us choose now: u1 = −c1ω1, u2 = −c2ω2, u3 = −c3ω3,
where ci is a positive constant. Replacing this in Vt :

Vt = −c1ω
2
1 + c2ω

2
2 + c3ω

2
3

k

Thus by the technique of Lyapunov, it is proven that ~ω = 0 is
globally asymptotically stable. Note that the value of Ci and k
does not matter as long as they are positive, but the value of
Ci will influence the performance of the control law.
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Nonlinear control: including quaternions

Let us consider now the full system including the quaternions

ω̇1 =
I2 − I3
I1

ω2ω3 +
u1

I1

ω̇2 =
I3 − I1
I2

ω3ω1 +
u2

I2

ω̇3 =
I1 − I2
I3

ω1ω2 +
u3

I3

q̇0 = −1

2
(q1ω1 + q2ω2 + q3ω3)

q̇1 =
1

2
(q0ω1 − q3ω2 + q2ω3)

q̇2 =
1

2
(q3ω1 + q0ω2 − q1ω3)

q̇3 =
1

2
(−q2ω1 + q1ω2 + q0ω3)
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Nonlinear control: La Salle’s Theorem

Can we find values of u1, u2 and u3 guaranteeing that the
equilibrium ~ω = ~q = ~0, q0 = 1 is asymptotically stable?

Unfortunately Lyapunov is not enough!

We also need ”La Salle’s Theorem”:

Let V be a Lyapunov function such that its derivative is
semidefinite negative (this is negative or zero). Let us call E
the set of states verifying V̇ = 0.
Let M be the largest invariant set of the system contained in
E .

Then the state goes to M when time goes to infinity.

What is the invariant set of a system? Is a set such that if the
initial condition starts in the set, the state stays in the set for
all t.
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Nonlinear control: finding the control (again)

Use the Lyapunov function

V = I1
ω2

1

2k
+ I2

ω2
2

2k
+ I3

ω2
3

2k
+ (q0 − 1)2 + q2

1 + q2
2 + q2

3

We see that the first condition of being a Lyapunov function
is verified ( q0 has been displaced so that q0 = 1 is at the
origin).
Taking a derivative:

Vt = I1
ω1ω̇1

k
+ I2

ω2ω̇2

k
+ I3

ω3ω̇3

k
+ 2(q0 − 1)q̇0 + 2q1q̇1 + 2q2q̇2 + 2q3q̇3

Substituting:

Vt =
ω1((I2 − I3)ω2ω3 + u1)

k
+
ω2((I3 − I1)ω3ω1 + u2)

k
+
ω3((I1 − I2)ω1ω2 + u3)

k

−(q0 − 1) (q1ω1 + q2ω2 + q3ω3) + q1 (q0ω1 − q3ω2 + q2ω3)

+q2 (q3ω1 + q0ω2 − q1ω3) + q3 (−q2ω1 + q1ω2 + q0ω3)
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Nonlinear control: finding the control (again)

Simplifying

Vt =
ω1u1

k
+
ω2u2

k
+
ω3u3

k
+ (q1ω1 + q2ω2 + q3ω3)

Let us choose now: u1 = −(kq1 + c1ω1), u2 = −(kq2 + c2ω2),
u3 = −(kq3 + c3ω3), where ci is a positive constant.
Substituting:

Vt = −ω1(kq1 + c1ω1)

k
− ω2(kq2 + c2ω2)

k
− ω3(kq3 + c3ω3)

k
+ (q1ω1 + q2ω2 + q3ω3)

= −c1ω
2
1 + c2ω

2
2 + c3ω

2
3

k

We cannot apply Lyapunov directly, we need La Salle!

First of all, the set E is just ω1 = ω2 = ω3 = 0 for all t.
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Finding the invariant set M

Replace ω1 = ω2 = ω3 = 0 in the syste for all t (in particular
this implies that the derivatives are zero):

0 = 0 + u1

0 = 0 + u2

0 = 0 + u3

q̇0 = 0

q̇1 = 0

q̇2 = 0

q̇3 = 0

Thus the invariant set verifies u1 = u2 = u3 = 0, and q
constant.

Since u1 = −(kq1 + c1ω1), u2 = −(kq2 + c2ω2),
u3 = −(kq3 + c3ω3), we obtain q1 = q2 = q3 = 0.
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Final stability result. Winding phenomenon.
Finally, since the quaternion must be unity, we get q0 = ±1.
Since q0 = 1 is the origin of the Lyapunov function, it
becomes stable (in fact q0 = −1 becomes unstable; which is a
problem since it is the same point, this is called the winding
phenomenon).
If one uses negative k in the control law then it can be
similarly shown that q0 = −1 becomes stable and q0 = 1
unstable. This can be verified by switching the Lyapunov
function to

V = −I1
ω2

1

2k
− I2

ω2
2

2k
− I3

ω2
3

2k
+ (q0 + 1)2 + q2

1 + q2
2 + q2

3

If one fixes k = k0 · sgn(q0) then one stabilizes the “closest”
equilibirum.
Very interestingly: in the control law there are no inertias in
the formulas, thus we don’t need knowledge of them. This is
an universal control law. However one needs to know the state
(~ω and q) to be able to apply the control law. 33 / 40
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Reaction Control Systems (RCS)

Astronáutica y Vehículos Espaciales 43Dec-20-07

2. Sistemas de Control Activo

Dinámica y Control de la Actitud

1. Sistemas de Control de Reacción.

En sistemas que requieran elevada
maniobrabilida, la solución más empleada
es un sistema de control de reacción o RCS,
que emplea un conjunto de propulsores
distribuidos por el vehículo para modificar la
actitud.
Puesto que en cada maniobra se consume
combustible, se debe optimizar el uso de los
propulsores para evitar un agotamiento
prematuro y fallo de la misión; por tanto se
debe permitir un margen de error para
evitar un exceso de activaciones.

Astronáutica y Vehículos Espaciales 44Dec-20-07

2. Sistemas de Control Activo

Dinámica y Control de la Actitud

1. Sistemas de Control de Reacción.

La llamada “lógica de propulsión”
establece cuando se disparan los
propulsores y cuando se acepta un
pequeño error de actitud/velocidad.
Normalmente es una combinación de
“zonas muertas” (sin actuación) e
histéresis (para evitar el disparo
repetitivo de propulsores). Además los
propulsores son actuadores “todo o
nada”, con lo que siempre actúan en
saturación. Por tanto un RCS es
intrínsecamente no-lineal.

In situations that require high/fast
manoeuvrability one can use a
Reaction Control Systems or RCS,
using a set of thruster distributed
on the vehicle to quickly and
efficiently modify attitude.

The so-called “propulsion logic”
establishes when thrusters are
fired and if a small tolerance of
attitude/angular velocity can be
accepted.

Normally it is a combination of
“dead zones” (no actuations) and
hysteresis (to avoid the repetitive
firing of thrusters exhausting all
fuel).

Thrusters usually are actuators
“all or nothing”, thus always
acting in saturation.

This means that RCS are
intrinsically nonlinear, but
discontinuous as well. 34 / 40
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Reaction Control Systems

For RCS, we can model the effect of the thrusters as torques
in Euler’s Equation.
We are only going to consider the regulation problem
(stabilization of an attitude to which we are already close).
Linearizing and taking Euler angles in the sequence 1-2-3 with
small angles, and combining the linearized kinematic and
dynamics, the system to be controlled becomes:

I1θ̈1 ≈ u1,

I2θ̈2 ≈ u2,

I3θ̈3 ≈ u3,

Next we design u1, u2 and u3 to stabilize the system; each axis
is independent of one another. Classical methods of control
(or Lyapunov) cannot be used for thrusters since they cannot
give a variable value (a control law such as u = Kx does not
work). This is the only options are u = 0, uMAX , uMIN , where
uMIN should be negative (we can assume to simplify
uMIN = −uMAX ). We will use more explicit/geometrical ideas.
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Control with thrusters

Consider a single axis, then α̈ = u (where u is redefined by
dividing by inertia), with initial conditions α̇0 and α0.
Integrating the differential equation:

α̇− α̇0 = tu, α− α0 − tα̇0 =
t2

2
u

If one removes time from the system:

α− α0 =
α̇0(α̇− α̇0)

u
+

(α̇− α̇0)2

2u

This is the equation of a parabola in the phase plane (θ-θ̇),
whose shape will depend from initial conditions and the
choices of control (u = 0, uMAX ,−uMAX ). If u = 0 time
cannot be removed and the system’s behavior is reduced to
moving along the segment α− α0 = tα̇0.
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Control with thrusters

Example of parabolas with zero initial condition (arrows
indicate how the system behaves):
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                                                                          α!

                                                u<0 u>0

α

 
 
The arrows indicate that each parabola is followed with a specified direction. If for instance motion 
starts from the origin with M>0, then 0>α!!  and α!  will increase. By increasing the input u the 
parabolas are more open. Taking the extreme approximation of infinite torque, parabolas would be 
replaced by vertical lines, so that the maneuver would be impulsive, with a change in α!  associated 
to a constant α. On the contrary, if u=0 we would have a phase portrait given by horizontal lines, 
with no change in α! . In general, phase plane maneuvers are designed in order to have both 0α!  and 

fα!  equal to zero, that is to say rest-to-rest maneuvers. In addition, since the origin of the phase 
plane is arbitrary, either α0 or αf is set to zero. 
 
We can now design a maneuver in the phase plane assuming impulsive torques. This is the case of 
maneuvers performed by using high thrust propulsive systems. 
 

 α!  
 
 1 M>0 start 
 
                                                     M>0 
 

                                                                      0 α 
 M<0 

       start 
        end                3             2 

 
 
Starting from point 0 to end in the origin, if we apply a positive torque we would reach point 1, but 
here α!  is positive and we would de part from the desired attitude. We must then start with a 
negative torque, to reach point 2, switch off the controller to keep α!  constant until point 3 is 
reached and then provide a positive torque to reach the target final attitude. Of course, should the 
initial attitude be negative all the maneuver has to be performed in the opposite way. Notice also 
that the vertical arcs of the phase plane are traced in almost zero time, since the torque is assumed 
infinite, and are equivalent to impulsive maneuvers. The total maneuver time depends then only on 
the horizontal arcs of the phase plane trace. In theory, we would like to have α!  as high as possible 
to minimize maneuver time, so that the horizontal arc would be drawn in a short time. The major 
issue in this case is thruster synchronization, since with high α!  even a small time error would mean 
to reverse the control (point 3 in the example) in a different point on the phase plane, so the target 
attitude would not be reached.  
 
We can now consider a more realistic case, with bounded maximum torque. 
 

To move we need to use the parabolas:
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 α!  
 
 M>0 with umax

 

            end M>0 with u<umax 

 
 
 
 α 
  
 
 start 

                          M<0 
 

 
We will consider only the parabolas corresponding to umax so that α!  is the maximum possible and 
time is minimum. The problem is to find the position in which the torque has to be switched in sign. 
If the maneuver is completed according to the control logic: 
 

( )α−= signuu max  
 

once on the axis α!  the sign of α changes so that the phase plane portrait would look like in the 
following figure: 
 

α!

           -α0 α0

α

 
 
There is evidently a limit cycle, the system would behave like an undamped second order oscillator. 
 
Change the control logic to: 

( )α+α−= !ksignuu max  
 

so that the switch in the sign of the control torque is along an inclined straight line. We would like k 
to be positive in order to have a negative inclination of the switching line: 
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Control with thrusters

First idea: u = −uMAX sign(α). The result is a limit cycle:
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 α!  
 
 M>0 with umax

 

            end M>0 with u<umax 

 
 
 
 α 
  
 
 start 

                          M<0 
 

 
We will consider only the parabolas corresponding to umax so that α!  is the maximum possible and 
time is minimum. The problem is to find the position in which the torque has to be switched in sign. 
If the maneuver is completed according to the control logic: 
 

( )α−= signuu max  
 

once on the axis α!  the sign of α changes so that the phase plane portrait would look like in the 
following figure: 
 

α!

           -α0 α0

α

 
 
There is evidently a limit cycle, the system would behave like an undamped second order oscillator. 
 
Change the control logic to: 

( )α+α−= !ksignuu max  
 

so that the switch in the sign of the control torque is along an inclined straight line. We would like k 
to be positive in order to have a negative inclination of the switching line: 
 

To avoid oscillation: u = −uMAX sign(α + kα̇), with k > 0.
The result:
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α!  
 
 

 
 
 α0 
 α 
 
 
 

 line α−=α
k
1

!  
 

 
Reaching the switching line, u changes its sign, so that the phase plane trace is switched to a 
parabola with reversed axis; as the number of torque switches increases, the trace gets closer and 
closer to the origin. k is then an index of the damping in the oscillations. However, rigorously, an 
infinite number of switchings are needed to reach exactly the origin in a general case. 
 
If we draw the two parabolas that pass through the origin, corresponding to positive and negative 
torque, since for 0α!  equal to zero we have: 
 

2

u2
1

α=α !  

we can consider the following switching curve: 
 

!
"
#

$
%
&

αα−α−= !!
u2

1
signuu max  

 
The phase plane portrait of the maneuver will then be: 
 

          α!  
 
 
 
                                               Switching line α0 α 

 
 
It can be shown that this is the minimum time maneuver. If the initial and final velocities are zero, 
the satellite accelerates at the maximum level for half the rotation, then decelerates at same level for 
the second half of the rotation. The sign of the control torque becomes a function of α and α! . 
 
Finally, if we want to consider a minimum fuel maneuver we should fix a maximum maneuver 
time. This can be seen as a minimum time maneuver with one intermediate coast arc (at constant 
α! ) if the allowed maneuver time is greater than the minimum maneuver time for the same rotation. 
 

38 / 40



Active control systems
Momentum exchange systems
Reaction Control Systems

Control with thrusters

To arrive in a finite time: u = −uMAX sign(α− 1
2uMAX

α̇|α̇|)
(exercise). The result:
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α!  
 
 

 
 
 α0 
 α 
 
 
 

 line α−=α
k
1

!  
 

 
Reaching the switching line, u changes its sign, so that the phase plane trace is switched to a 
parabola with reversed axis; as the number of torque switches increases, the trace gets closer and 
closer to the origin. k is then an index of the damping in the oscillations. However, rigorously, an 
infinite number of switchings are needed to reach exactly the origin in a general case. 
 
If we draw the two parabolas that pass through the origin, corresponding to positive and negative 
torque, since for 0α!  equal to zero we have: 
 

2

u2
1

α=α !  

we can consider the following switching curve: 
 

!
"
#

$
%
&

αα−α−= !!
u2

1
signuu max  

 
The phase plane portrait of the maneuver will then be: 
 

          α!  
 
 
 
                                               Switching line α0 α 

 
 
It can be shown that this is the minimum time maneuver. If the initial and final velocities are zero, 
the satellite accelerates at the maximum level for half the rotation, then decelerates at same level for 
the second half of the rotation. The sign of the control torque becomes a function of α and α! . 
 
Finally, if we want to consider a minimum fuel maneuver we should fix a maximum maneuver 
time. This can be seen as a minimum time maneuver with one intermediate coast arc (at constant 
α! ) if the allowed maneuver time is greater than the minimum maneuver time for the same rotation. 
 

If one fixes a minimum time and wants to minimize fuel
(exercise):
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                                                                                 α!

α0

     α

 
 
In this case, the switching from one parabola to the other occurs in a finite time. Notice that if tmax is 
equal to the minimum time we would reduce the coast arc to zero and find again the minimum time 
solution. Fixing tmax becomes equivalent to fixing maxα! . 
 
The process just show is valid only if the rotation is around one principal axis; in other cases, the 
complete set of Euler equations should be used as system dynamics (and optimization dynamic 
constraint) and a closed form solution can no longer be found. 
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Control with thrusters: additional considerations

The procedure just explained cannot be applied if one cannot
neglect nonlinearities (gyroscopic couplings make necessary
the use of all the axis simultaneously). Then one needs to use
the full theory of optimal control.

In practice it is enough that the solutions converge close
enough to the origin (to avoid switching on the thurster too
often). This requires the use of dead zones and hysteresis.
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Nonlinear control with constant thrust actuators 
 
Considering the dynamic behavior of a satellite projected in the phase plane, it is possible to set up 
a nonlinear controller decoupled for each axis. The control is based on a combination of the angle ϑ 
and its derivative dϑ. In particular, a nonlinear switch called “Schmitt trigger” activates the 
controller on the basis of the value of a variable ϑ+τdϑ. Assume, for example, that the value of 
ϑ+τdϑ is greater than a given limit uon. In this case the actuators would be switched on until the 
same variable ϑ+τdϑ falls below a second limit uoff. 
 

 

uon 

-uon 

uoff 

-uoff 

U 

ε 
2sI

1

⋅
 

1+τs 
ϑϑ !!" +=  

ϑ  cϑ  

+ 
- 

Schmitt trigger 

 
 
The values of uon, uoff can be determined considering the maximum allowable angular error ϑmax, 
the maximum admissible angular rate dϑmax and the time constant τ. With reference to the 
following figure, we must first of all consider the two parabolas passing from the points (±ϑmax,0), 
corresponding to the controlled dynamics with the maximum torque.  

 
 

ϑ!  

ϑ  

maxϑ!  

maxϑ!−  

maxϑ  

maxϑ−  

onu−=ε  

offu−=ε  onu=ε  

offu=ε  

lϑ  

 
 
Intersect the two parabolas with the horizontal lines at dϑmax, to identify ϑ1, the angle error at which 
the controller must be switched on in order to prevent the error from getting larger than ϑmax 

c

2
max

max1 2u
dϑ

ϑϑ −=  
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uc = M/I is still the control command. The switching curve to activate the controller must intercept 
the point (ϑ1, dϑmax) and have a slope equal to −1/τ. The value of τ can be tuned according to some 
performance requirements. The values of uon and uoff are then evaluated as: 
 

uon = τdϑ+ϑ1 
uoff = −τdϑ+ϑ1 

 
With symmetry considerations, the switching values for negative errors are determined. On the 
phase plane, in ideal conditions with no disturbance torque and sensor error, the satellite phase 
portrait must converge to a limit cycle bounded by the values −ϑmax/+ϑmax and −dϑmax/+dϑmax. 
The transient response for large initial errors will still converge to the same final limit cycle, 
provided the time constant τ is selected with the correct sign. The parameter τ has an influence on 
the way the phase portrait converges to the limit cycle. 
 

 
 
Considering the inevitable presence of sensor errors and delays in the activation of the actuators, the 
switching of the control will not be exactly on the desired switching lines. This means that the real 
limit cycle in the phase plane will be slightly different from the ideal one, as shown in the following 
example. 
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