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control systems

Passive control systems can allow for some perturbation
rejection and give stability enough for some applications.
However, particularly at the beginning of a mission, all
spacecraft need to perform:

m Slew maneuvers
m Adjustments of spin speed
m Stationkeeping maneuvers

Thus, in many cases, one needs an active control systems
(active in the sense of requiring additional energy to work as
well as some kind of logic).

In missions requiring high accuracies, that active control
system will be the primary system. Then, one speaks about
three-axis stabilized attitude control.

In other cases, it may be a secondary system, which only
requires occasional use. i1
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m Before explaining the algorithms for attitude control, it is
important to quickly review the actuators that are used to
modify the attitude of a spacecraft (through some term in
Euler's equations). The different types of actuators are:

Thrusters: based on expelling mass. Since mass is finite these
devices have limited use. Known as Reaction Control Systems.
Reaction wheels and inertia wheels, with changing angular
speeds, as seen in Lesson 5.

Control Moment Gyroscopes (CMG): they are as inertia wheels
(a disc-like device spinning at large speeds), which, instead of
modifying their angular speeds, tilt their axis of rotation
through motorized gimbals, thus quickly modifying their
angular momentum.

Magnetorquers, which use the magnetic field to produce a
torque.

Structural elements for passive control: booms, yo-yo devices,
nutation dampers... not covered here.

v

m It is normal to have several kind of actuators in a spacecraft L
for redundancy and given that they have different properties.  3/40
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T hree-axis stabilized attitude control

m Satellites with three-axis stabilized attitude control can have
any kind of pointing (inertial, orbital, some ground target...)

m Objectives may be two: either to keep the satellite (in the
presence of perturbations) in a fixed attitude (a simple
regulation /stabilization problem) or to perform a slew
maneuver (which maybe to track a target or just modifying
the attitude).

m [here are two main families of actuators to achieve these
goals: reaction/inertia wheels /CMGs (also known as
momentum exchange systems) and RCS. Magnetorquers can
also partially perform this but it is a bit more difficult due to a
direction without actuation: we will not consider them.

m We will start with the first goal, since the second is more
difficult, for both reaction/inertia wheels and RCS.

m How to perform slew maneuvers will also be consider but only
for reaction/inertia wheels.
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Momentum exchange systems

m For the highest degree of precision
in attitude, manoeuvrability and
stabilization, and for any
orientation independent of the

Inertia tensor, one can use
momentum exchange systems B, (roll
which use reaction wheels, inertia T~ [ pi
aA Momentum
wheels and /or CMGs, based on Q; {pitch) — Wheel
. \ .
conservation of angular / =~ Giiude
Roll Electronics
momentum. Reaction g

Sun Sensors

m Nevertheless these are expensive
system, with low tolerance to
failures, and require an auxiliary
system (thruster or magnetorquers) J'A
to unload momentum and thus
avoid saturation.
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Spacraft with three reaction wheels

Spacecraft

d

Fig. 6.10 Gyrostat in a circular orbit.

m Assume the situation in the figure, with three reaction wheels
in the three principal axes:

hwi + (I3 — /2)(,02603 —+ /:ll —+ w2h3 — (,U3h2 = M
hwy 4+ (h — B)wiws + hy +wshy —wihs = M,
/3(,;)3 + (12 — /1)w2wl -+ h3 — wghl + w1 h2 — M3

m The angular momentum of wheels is denoted as h; = wg.Ir..
These are control variables!
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Spacraft with three reaction wheels

Spacecraft

-
ay

Fig. 6.10 Gyrostat in a circular orbit.

m Remember also from Lesson 5 that once we know the speed
we need for the wheels, it can be achieved by using the
wheels’ internal electrical motors.

m [he model from Lesson 5 was:

w1 +h = Uk
Irotn + hy =
Irsis + hs = Uz

where J; is the torque of the electrical motors. This is in the
end what we can really actuate directly.

L
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Spacecraft with three reaction wheels

m Let us now use a nomenclature in which we denote the effect
of the wheels with the letter u by following the classical
control nomenclature:

hwi + (B — bh)waws = up + M
howy + (h — B)wiwz = u+ My
Bws + (b — h)waws = wuz3+ M3
where
uy = —i‘ll — wphz 4+ w3 hy
uo = —i72 — w3hy + wih3
us = —i73 — wihy + wohy

This is, 0 = —h+ h*&
m In addition we have the kinematic differential equation

1

q= 59* 9o

(me
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Regulation: Stabilizing a given attitude

m For regulation of a fixed attitude, the problem is stabilizing
the values q(t) = ger and w(t) = 0. In addition, we assume
that we initially start close to that value of the state.

m Thus, we linearize Euler's equations around w(t) = 0. Ignoring

perturbing torques (Question: what could we try to do to
mitigate perturbing torques?):

d _5(,01_ 0 0 O _5(,01_ _1/11 0 0 Uy
d_ dwo = 0O 0 O dwo + 0 1//2 0 Lo
“l1ows| |00 0| |6ws| | 0 0 1/k ]| us
where 7= —h + h*6

m Notice that if we find « solving the control problem, we could
find the corresponding values of h by solving the differential
equation (however: physical limitations, such as saturations or
rate limits could pose a problem). -
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Stabilization

On the other hand, the attitude quaternion should be close to
the reference attitude (if we start close to the attitude g ef).

By following Lesson 2, then we can write ¢ = g,er * 0g, Where
Gref 1S the desired attitude and 0q the attitude quaternion:

a(2) = ¢4+1Heﬂ|2 [ 2]

From Lesson 4 the relationship between a and the angular
velocity is @ = 000 + @ X Wyef, SINCE Wyref = 0 — 3~ 0.

Thus:
d_al_ 1 0 0] [ dwp |
d_ do = 0 1 0 5(,02
“las] [0 0 1]] 6ws|

Combining the equations for the error in angular velocity and
attitude we find a full description of the error of the system, in
the next slide.
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Stabilization

m System description:

" Sw; 1] [0 O O O O O 7T 6wy 1 [ 1/h 0 0
Swy O 0 0 0 0 O Sws 0 1/b 0
d | 6w3 | | 0 0 0 0 0 O Sws 0 0 1/ “1
% a1 |T| 1 0o 0o o o0 o a | 7| o 0 0 2
ap 0 1 0 0 0 0 aH 0 0 0 3
| a3 J Lo o 1 0o o o0JL a 1 L o 0 0o

m Call X to the variables describing the state, this is a classical
way to write a linear system

X = AX+ Bif

m We can use “our favorite linear method” to find a (linear)
control law & = KX, which then later one needs to transform
in required velocities for the wheels by solving the angular
speed that relates  with the angular momentum of the
wheels, and then later transform that into commands for the
wheels’ motors.

m A possible method is LQR (linear quadratic regulator) with
“infinite horizon”. Another is pole placement.
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The LQR method

Given |
X =Ax+ Bu

find a control law (t) (with feedback: & = KX) minimizing:
J:/ (XT(t)Qx(t) + &' (t)Rid(t))dt
0

Problem posed and solved first by Rudolph Kalman!
Assumptions: @, R symmetrical and Q > 0 (definite
semidefinite positive, which is equivalent to all eigenvalues
positive) and R > 0 (semidefinite positive, which is equivalent
to all eigenvalues non-negative).

Additional assumption: The system is“controlable”. Meaning
that “is is possible to solve the problem™ (it is easy to solve
control problems that cannot be solved. For instance

X] = U1, Xp = x2.) Mathematically a problem is controllable if
C =[B AB A%?B A" 1B] is full row rank, where n is the
number of states. Is this verified in our case?
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The LQR method

m [he control law that solves the problem is
U= Kx

where the gain K is found as follows
Find the matrix P that solve the so-called “algebraic Riccati
equation”:

Q+A"P+PA—PBRIB'P=0

for instance with the Matlab command “are” (which requires
the Control Systems Toolbox) P=are (A,B*inv(R)*B’,Q) ;
The gain is then K = —R71BTP

m The Riccati equation is solvable only if the system is
controllable.

m Optimal control should guarantee a good behavior of the
system, but does not take into account the actuator’s
saturation or other nonlinear behavior. The choice of Q and R
greatly influences the quality of the controller (more o
conservative or more aggresive).
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The LQR method

m To implement a control law
U= Kx

let us first remember the definition of x.

m As &,or = 0, the first three components are the real value of
angular speed.

m The next three components are a, from which one extracts
the quaternion error. It is easy to see that

5a
=229

0qo

which comes from dq = g%, x q(t).
m Once the control v is computed, one needs to solve

h= —i+ h*38& to find out how to solve the angular
momentum of the wheels.

(me
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Slew maneuvers and tracking

m We have studied in Lessons 2 and 4 how to compute a given
angular velocity to maneuver from a given attitude to another.

m Remember that, given g; and gr and a certain time T it was
required to find qr = g7 % gr, extract Euler's axis € and angle

¢, and then & = ew(t), where w needs to verify foTw(T)dT.

m In addition, we can impose additional conditions such as
starting and finishing at rest, for instance by imposing a shape
to w(t) of the form w(t) = At(t — T) (Exercise: find A).
Other conditions could be imposed.

m Once we find the required angular velocity, if we substitute it
in Euler’'s equation we can find the control. This is sometimes

called “open loop control” or feedforward control, and does
not use feedback.

15/ 40
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Slew maneuvers and tracking

m If we call the found angular velocity W,er(t), and the
quaternion generated by that angular speed the reference
quaternion qrr(t), we can also find a “reference control”
(feedforward control) d.er as:

Uref1 = Ilwrefl + (/3 — I2)wref2wref3
Urefza = hwrera + (h — B)wrerswrer1
Uref3 = BWwrers + (h — h)wrer1wrer2

m As before from this u,.r we can find the required speed of the
wheels and from that speed of the wheels, the internal
electrical motors’ torque that would be needed to perform the
maneuver.

m What would happen if we try just to apply this feedforward
control without any feedback mechanism?

m The problem of following the reference profile &y er(t),qrer(t)
Is sometimes called the tracking problem.

(me
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Tracking

m One possible idea to solve tracking is as follows: linearize
around the reference profile. Compute an additional feedback
controller around the reference profile that is added to the
feedforward control (so we have feedforward+feedback) so we
close the loop and guarantee stability (at least with respect to
small errors and perturbations) so that the system is kept on
the desired reference profile.

m Thuslet 00 = @ — Wper, OU = U — Uyer, and use the quaternion
error as previously defined. The linearized equations are:

howy + (b — b)(Wref2dws + dwowrers) = dug + My
hows + (h — B)(Wref30wi + dwswrer1) = Oux + Mo
Bows + (h — h)(Wref10ws + dwiwrer2) =  duz + Ms

and for the attitude error:

X = o

a~ 0w —Ww, . a a

17 / 40
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Tracking

m System description ignoring perturbing torques:

- h—1h h—1h .
- Swy T I IO A Wref3 ,/1, Wref2 0 0 0 " Swy
4 dw) 3; Wref3 0 3; Wrefl 0 0 0 dwy
0] = — o)
E ;3 = h I I Wref2 h 2 ! Wrefl 0 0 0 0 :3
ED) 1 0 0 0 Wref3 —Wref2 a
| a3 0 1 0 Wref3 0 Wrefl | a3
- 0 0 1 Wref?2 —Wrefl 0 =
- 1/h 0 0 -
0 1/1 0
0 0 1/h g“l
Tl oo 0 0 o2
0 0 0 3
| 0 0 0
m Classical description as before
X =A(t)X+ B(t)od
m Now A and B are time-varying: cannot use the LQR method
as before.
m We need more advanced methods, such as LQR (linear
v
1

quadratic regulator) with “finite horizon" .
18 / 40
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Tracking with finite horizon LQR

m Given _
X =A(t)X+ B(t)od

find du(t) with feedback (du(t) = K(t)X) minimizing

J = /OT(IT(t)Q(t)%(t)+5L7T(t)R(t)éﬁ’(t))dt+>?T(T)Qend?(T)

m Assumptions: Q, R, Qeng symmetric and Qeng, @ > 0, R > 0.

m Since it is a finite horizon controller, the controllability
hypothesis is not required, but there could be problems if
there is a loss of controllability of the system.

S,
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Tracking with finite horizon LQR

m [ he control law that minimizes J is as follows:
ou = K(t)x

where the gain K(t) is found as follows:
Find P(t) that solved the so-called “Riccati differential

equation”:
—P:ATP+PA—PBR_1BTP‘|‘ Q, P(T):Qend

for instance using ode45 in Matlab.
The gain is then K(t) = —R™!BT P(t)

m Riccati’'s differential equation is always solvable! However, it
cannot be solved in real time, because it needs to be solved
backwards in time (there is a final condition instead of an
initial condition). Thus one solves it in advance and stores the
values of K(t).

m As before: Choices of @ and R (also Qeng) determines the

v
quality of the controller (more conservative or more aggresive). =
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Tracking with finite horizon LQR

m o implement the control law
ou = K(t)x

one needs to remember the definition of X.
m As Wrer # 0, the first three components are @ — Wef.

m The second three components correspond to a, that need to
be extracted from the quaternion error. Remember that

0q
0qo

for which we need to compute dq = g7, * q(t).

a=>2

m The final control is & = tU,er + 0U.
m Remember that once ' is known, at each instant is required

to solve h = —id + h*6& to know how to modify the angular
momentum of the wheels and therefore their internal torque .
Ji. L]
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Nonlinear control

m “Nonlinear control” comprises a wide range of techniques that
do not require the use of linearization.

m Consider the following problem. Starting from &(0) and g(0)
we want to reach the identity attitude at rest. It is enough for
us if the system “tends’ to that state, this is, our goal is that
S(t) = 0y qo(t) = 1, G(t) — 0 when t — 0.

m This is, we make “asymptotically stable” the equilibrium
G=0,g=14¢=0.

m If this is true, for any initial condition, then one says that the
equilibrium is globally asymptotically stable.

m Notice that the target attitude could be any, just by making a
rotation of the inertial frame as ¢’ = ¢’ x q.

m We solve this problem with the so-called “Lyapunov function
technique” . o

22 /40



Nonlinear control

m Let us start by remembering than since we don't linearize,
now our system is the original one, writing as before the

Active control systems
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control terms in the equations.

m First, the angular velocity equations:

wyp =

Wy =

h— 1 Uy
h
—h U

I I
/1 — I2 us

I3 I3

Wow3 + ——

w3wi + —

Wi + —

fme
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Nonlinear control: Lyapunov functions

m Can we find u1, up and w3 such that the equilibirum & = 0 is
globally asymptotically stable?

m The technique of Lyapunov functions is as follows. Let V' be a
regular function (continuous, differentiable) that depends on

the state (in this case, the angular velocity and quaternions)
such that :

m |t is always positive for any value of the states, except when the
state is zero; and for zero, it is zero (this is, positive definite).

m The time derivative of V is definite negative (this is, negative
for any value of the state except zero).

m Then it follows that the origin (zero value of the state) is
asymptotically stable (this method can be understood by
looking at the level curves of V).

m If in addition the limit of V when the state goes to infinity
also tends to infinity, the result is global. o

24 / 40
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Nonlinear control: Lyapunov functions

m The technique of Lyapunov functions is as follows. Let V' be a
regular function (continuous, differentiable) that depends on

the state (in this case, the angular velocity and quaternions)
such that :

m |t is always positive for any value of the states, except when the
state is zero; and for zero, it is zero (this is, positive definite).

m The time derivative of V is definite negative (this is, negative
for any value of the state except zero).

m Then it follows that the origin (zero value of the state) is
asymptotically stable (this method can be understood by
looking at the level curves of V).

m If in addition the limit of V when the state goes to infinity
also tends to infinity, the result is global.

(me
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Nonlinear control: Lyapunov functions

m Let us see how this works out for our first case with only
angular velocity. Consider:

2 2 2

w w w
V=242 4,23
15, T 25 T 55,

m We see that the first conditions is fulfilled if k is a positive
constant (we will define it later).

m Taking derivative:

wld)l wgwg w3d}3
/ /
kTR TR

Vi = |

m Substituting the derivatives:

w1((h — B)waws + u1) N wo((k — h)w3wy + w) N w3((h — h)wiws + u3)
k k k

Ve =

(me

26 / 40



Momentum exchange systems

: | _
AEHRTE GRS e Reaction Control Systems

Nonlinear control: finding the control

m Simplifying
w1y wWo o w3 us
Vt — -+ -+
k k k
m Let us choose now: U1 = —cwi, U = —Cowo, U3 = —C3Ws3,

where ¢; is a positive constant. Replacing this in V4:

clw% + ng% + C3w§

k

Vt —

m T[hus by the technique of Lyapunov, it is proven that @ = 0 is
globally asymptotically stable. Note that the value of C; and k
does not matter as long as they are positive, but the value of
C; will influence the performance of the control law.

Ty,
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Nonlinear control: including quaternions

m Let us consider now the full system including the quaternions

I, — |
01 = ———2wpws+ e
l N
[ — |
Wy = > L wW3wi + el
I I
. L — | u
w3 = 1 2Wlw2 + 2
I3 I3
_ 1
do = 5 (qiw1 + qaws + q3ws3)
_ 1
a = 5 (CIowl — q3w2 + Q2w3)
_ 1
d> = 5 (CI3W1 + qowo — Q1w3)
_ 1
q3 = 5 (—gow1 + qiw2 + qows)

(me
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Nonlinear control: La Salle's Theorem

m Can we find values of uy, up and us guaranteeing that the
equilibrium & = g =0, gop = 1 is asymptotically stable?

m Unfortunately Lyapunov is not enough!

m We also need "La Salle's Theorem”:

m Let V be a Lyapunov function such that its derivative is
semidefinite negative (this is negative or zero). Let us call E
the set of states verifying V = 0.

m Let M be the largest invariant set of the system contained in
E.

m Then the state goes to M when time goes to infinity.

m What is the invariant set of a system? Is a set such that if the
initial condition starts in the set, the state stays in the set for
all t.

(me
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Nonlinear control: finding the control (again)

m Use the Lyapunov function

2 2 2

w3
_ w) w3 Ry > > >
V = Il2k+l22k+l32k+(qo ) +q1+ 9>+ g3

m We see that the first condition of being a Lyapunov function
is verified ( go has been displaced so that gg = 1 is at the
origin).

m Taking a derivative:

W1w1 WoW? W3w3
+ b + 15

V., = |
' Lk k k

+2(q0 — 1)go + 29141 + 292G + 29343

m Substituting:

wi((h — B)waws + up) N wa((l3 — h)wswy + w2) N w3((h — h)wiwz + u3)
k k k

—(q0 — 1) (q1w1 + q2w2 + q3w3) + q1 (Qow1 — q3w2 + Gows3)

+G2 (q3w1 + qow2 — qiw3) + g3 (—qaw1 + qrw2 + qow3)

Ve =

(me
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Nonlinear control: finding the control (again)

m Simplifying

wiu wou wau
Vi = 1kl+ 2kz+ 3k3+(q1w1+q2w2+q3w3)

m Let us choose now: u3 = —(kq1 + ciwi), ux = —(kgo + cow?),
uz3 = —(kqs + c3ws), where ¢; is a positive constant.
Substituting:

wi(kqr + awi)  wa(kqe + wz)  ws(kgs + caws)
k k k

+ (q1w1 + qowz + g3ws)

clcu% + ng% + c3w§

k

Vt — —

m We cannot apply Lyapunov directly, we need La Salle!

m First of all, the set E is just wi = wp = w3 = 0 for all t.

(me
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this implies that the derivatives are zero):

0
0
0
do
g1
g2
g3

m [hus the invariant set verifies uyy = up = u3 =0, and ¢

constant.

m Since uig = —(kq1 + Clwl), Uy — —(kQ2 + ngg),
us3 = —(kqs + c3ws), we obtain g1 = g2 = g3 = 0.

0+ g
0+ w
0+ us3
0

0
0
0

(me
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Final stability result. Winding phenomenon.

m Finally, since the quaternion must be unity, we get go = £1.
Since go = 1 is the origin of the Lyapunov function, it

becomes stable (in fact gg = —1 becomes unstable; which is a
problem since it is the same point, this is called the winding
phenomenon).

m |f one uses negative k in the control law then it can be
similarly shown that go = —1 becomes stable and qg =1
unstable. This can be verified by switching the Lyapunov
function to

w2 w2 2

W3
V= /12k I22k o T

m If one fixes k = kg - sgn(qp) then one stabilizes the “closest”
equilibirum.

m Very interestingly: in the control law there are no inertias in
the formulas, thus we don't need knowledge of them. This is
an universal control law. However one needs to know the state .
(& and g) to be able to apply the control law. 33/40
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Reaction Control Systems (RCS)
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manoeuvrability one can use a
Reaction Control Systems or RCS,
using a set of thruster distributed
on the vehicle to quickly and
efficiently modify attitude.

The so-called “propulsion logic”
establishes when thrusters are
fired and if a small tolerance of
attitude/angular velocity can be
accepted.

Normally it is a combination of
“dead zones” (no actuations) and
hysteresis (to avoid the repetitive
firing of thrusters exhausting all

fuel).

Thrusters usually are actuators
“all or nothing”, thus always
acting in saturation.

This means that RCS are
intrinsically nonlinear, but -

discontinuous as well. 34 /40
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Reaction Control Systems

m For RCS, we can model the effect of the thrusters as torques

in Euler's Equation.

m We are only going to consider the regulation problem
(stabilization of an attitude to which we are already close).
Linearizing and taking Euler angles in the sequence 1-2-3 with
small angles, and combining the linearized kinematic and
dynamics, the system to be controlled becomes:

161
lh 6
1363

ui,

uz,

&

u3,

m Next we design vy, up and u3 to stabilize the system; each axis
Is independent of one another. Classical methods of control
(or Lyapunov) cannot be used for thrusters since they cannot
give a variable value (a control law such as v = Kx does not
work). This is the only options are u = 0, upax, Upn, Where
upyn should be negative (we can assume to simplify

upiy = —upmax ). We will use more explicit/geometrical ideas. =
35 /40



Momentum exchange systems

i I :
AEHRTE GRS e Reaction Control Systems

Control with thrusters

m Consider a single axis, then & = u (where u is redefined by
dividing by inertia), with initial conditions &g and ay.
Integrating the differential equation:

#2

a — ag = tu, Oé—ao—tdozau

m If one removes time from the system:

do(c — cvg) N (v — cvg)?

o — O —
u 22U

m This is the equation of a parabola in the phase plane (6-6),
whose shape will depend from initial conditions and the
choices of control (v =0, upyax, —upmax). If u=0 time
cannot be removed and the system’s behavior is reduced to
moving along the segment a — ag = tayp.

(me
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Control with thrusters

m Example of parabolas with zero initial condition (arrows
indicate how the system behaves):

oA

u<0 u>0

>
o
m To move we need to use the parabolas:
A 4
M>0 with Uy
end o M>0 with u<u,,,,
\\ ,v\>a
tart
V<0 S :
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Control with thrusters

m First idea: u = —upaxsign(a). The result is a limit cycle:
Adc
%CD("O >
m To avoid oscillation: u = —upaxsign(a + ko), with k > 0.
The result: s
A

RN

. °‘

) ) 1
line ¢ =——o
k
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Control with thrusters

m To arrive in a finite time: u = —u sign({ o — Q|
O | mAaxsign( D UNMAX &)
(exercise). The result:
AQ
R >
Switching line——_\ Ol o

m If one fixes a minimum time and wants to minimize fuel

(exercise): N

(me
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Control with thrusters: additional considerations

m The procedure just explained cannot be applied if one cannot
neglect nonlinearities (gyroscopic couplings make necessary
the use of all the axis simultaneously). Then one needs to use

Active control systems

Momentum exchange systems
Reaction Control Systems

the full theory of optimal control.

m In practice it is enough that the solutions converge close
enough to the origin (to avoid switching on the thurster too
often). This requires the use of dead zones and hysteresis.
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