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Attitude estimation

The (dynamic) estimation of attitude (classicaly known simply
as attitude estimation) requires the use of kynematic models,
gyro measurements, and Kalman filter, as well as
complementary sensors (measuring a direction).

Gyros measure the angular velocity ωB
B/I w.r.t. the inertial

frame. One can recover the attitude by using this
measurement to integrate the kinematic differential equations.
Unfortunately, small errors acumulate over time generating a
certain drift in the estimation; thus it is always necessary to
use additional sensors to improve the measurement.

To better understand how errors acumulate, one needs to
model it as an stochastic (random) process, and use the
propagation equations.

Notation: in this lesson, arrows will not be used for vectors.
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Stochastic Processes

A stochastic process (or stochastic variable) is a random
variable X (t) whose distribution evolves (changes) with time.
Estimation errors are modelled as this.

Thus, mean and covariance also change with time: m(t),
Σ(t).

For a process, one can define the autocorrelation as
R(t, τ) = E [X (t)X (τ)T ]. Autocorrelation allows to model
how the past history of X influences its present value.

Gaussian process: A Gaussian process verifies
X (t) ∼ Nn(m(t),Σ(t)), this is, it is distributed as a
multivariate normal whose mean and covariance evolve with
time.
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White noise.

White noise: It is the process ν(t) verifying:

E [ν(t)] = 0.
E [ν(t)ν(t)T ] = Q.
R(t, τ) = E [ν(t)ν(τ)T ] = δ(t − τ)Q, where δ(x) is 1 if x = 0
and 0 otherwise.

The last condition means that the value of white noise at
present is independent of its value in any previous instant.

Gaussian white noise: It is a process verifying the previous
conditions and in addition, being Gaussian.

A good model for sensor errors is δε(t) = b + Dν, where ν is
Gaussian white noise. The value of b is the mean of the error
(bias), which sometimes is also modelled as a process itself
(albeit slowly varying).
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Propagation of error. Continuous case

Consider a differential equation such as

ẋ = Ax + Dν,

where ν is Gaussian white noise with covariance Q, and the
initial condition is also a Gaussian: x0 ∼ Nn(m0(t),P0(t)).
This is called a stochastic differential equation (the simplest
possible one). Then one has that x is a Gaussian process,
x ∼ Nn(m(t),P(t)), with mean and covariance evolving as
follows:

ṁ = Am,

Ṗ = AP + PAT + DQDT ,

m(0) = m0,

P(0) = P0
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Propagation of error. Discrete case

Consider a discrete equation of the type

xk+1 = Axk + Dbk ,

where bk is Gaussian white noise with covariance Qk , and the
initial condition is also a Gaussian: x0 ∼ Nn(m0(t),P0(t))This
is called a stochastic discrete process (the simplest possible
one). Then one has that xk is a Gaussian process,
xk ∼ Nn(mk(t),Pk(t)), with mean and covariance evolving as
follows:

mk+1 = Amk ,

Pk+1 = APkA
T + DQkD

T ,
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1-D example: gyro drift

When one has gyro measurement, one needs to integrate the
kinematic differential equations with the measurement.

To easily grasp the concept of “error as a process”, let us
analyze the easiest possible case: a single degree of freedom in
rotation. Thus, there is a single angle θ, whose kinematic
differential equation is

θ̇ = ω

A gyro produces a measurement of ω which we can denote by
ω̂; for simplification purposes, assume we have a continuous
measurement (it will be fast but not really continuous). In
reality, it will not be exactly ω, but it’d rather be corrupted by
some noise (which we model as Gaussian white noise, with
variance Q related to the quality of the gyro) ν:

ω̂ = ω − ν
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1-D example: gyro drift

If one tries to estimate θ (denote the estimation as θ̂) from ω̂
and assuming we know some estimation of its initial value θ̂0,
one would just write:

˙̂
θ = ω̂, θ̂(0) = θ̂0

Thus the estimation error δθ = θ − θ̂ verifies:

δθ̇ = ω − ω̂ = ν

Assuming some initial error δθ(0) ≈ N(0,P0), one finds by
applying the previous theory that the error
δθ(t) ≈ N(m(t),P(t)), with:

ṁ = 0,m(0) = 0 −→ m(t) = 0, Ṗ = Q,P(0) = P0 −→ P = P0+Qt

Thus, even if the mean of the error is always zero, the
variance grows linearly in time and eventually blows up, thus
this estimator is useless in the medium-long term (but note
error is small in the short term if P0 was small to begin with). 8 / 33
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External measurement

Now assume one has external measurements of the angle with
an additional sensor. When time t = tk (this is at certain time
instants) one gets θ̂(tk), which we denote as θ̂mk , with some
other device (which also should have some associated error,
thus θ̂mk = θk − ε, where ε is white noise with variance R.
Since time in-between measurements could be large, maybe it
is not a good idea to ignore the gyro and say θ̂(t) = θ̂mk for
t ∈ [tk , tk+1).
A possible idea is to reset the estimator of the previous slide
when t = tk , this is, combining the measures as follows:

˙̂
θ = ω̂, θ̂(tk) = θ̂mk , t ∈ [tk , tk+1),

Thus every new external measurement resets the initial
condition of the differential equation and one integrates again.
It is easy to see that the estimation error now verifies
δθ ≈ N(m(t),P(t)), with m(t) = 0 and Ṗ = Q, for
t ∈ [tk , tk+1), with P(tk) = R, thus P = R + Q(t − tk). 9 / 33



Error as an stochastic process
Estimation: Kalman filtering

1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter

The resetting idea makes the error maximum just before a
measurement. The error would be P = R + Q(tk+1 − tk)
right at that time instant.

The problem with resetting is that it neglects the previous
estimation from the differential equation, when in-between
measurements it does not grow so large (it is short term). The
idea of Kalman filtering is to combine the estimation from the
differential equation (called the “a priori” estimation obtained
from a “propagation step”) with the external measurement in
an “update step” to obtain the “best possible combination”
(called the “a posteriori” estimation). The combination is
best in the sense that it minimizes the covariance.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter

Some notation: estimation before the measurement is called a
priori and denoted as θ̂−k .

Estimation after the measurement is the a posteri estimation,
denoted as θ̂+

k and it is computed as:

θ̂+
k = θ̂−k + K (θ̂mk − θ̂−k )

where K is the Kalman gain and the parenthesis is the
difference between the external measurement and the a priori
estimation.

K is computed to minimize the covariance of the a posteriori
error.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter

Covariance a priori is called P−
k .

Remember the formulas for combination of normals from
Lesson 3 (slide 32).

A posteriori, computing the covariance of θ+
k :

P+
k = (1− K )2P−

k + K 2R

Take derivative w.r.t. K and make it zero to find a minimizer:

0 = −2(1− K )P−
k + 2KR, thus K =

P−
k

P−
k +R

.

Then covariance a posteriori becomes with that value of K :

P+
k =

P−
k R

P−
k + R

It can be seen that P+
k is less than both R and P−

k (since both
are positive numbers): thus one gets to improve estimation by
using all the available information in the best way!
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter

Summarizing the algorithm:

Initialization: For t0 = t = 0 start with θ+
0 = θ̂0 and P+

0 = P0.

Propagation: For t ∈ [tk , tk+1), k = 0, . . . , one integrates
from the last a posteriori estimation both the estimation and
the covariance of the error

˙̂θ = ω̂, θ̂(tk) = θ̂+
k , Ṗ = Q, P(tk) = P+

k ,

Update: When t = tk+1 set θ̂−k+1 = θ̂(tk+1) and

P−
k+1 = P(tk+1), and one gets the external measurement

θ̂mk+1. Apply the KF:

θ̂+
k+1 = θ̂−k+1 + K (θ̂med

k+1 − θ̂−k+1),

where K =
P−
k+1

P−
k+1+R

, also P+
k+1 =

P−
k+1R

P−
k+1+R

.

Increase k and repeat the propagation step.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter: dependence on process/measurement noise

If the measurement of the gyro is of very bad quality (Q is
very large) then P−

k →∞, one can see tha then P+
k → R,

K → 1, and therefore θ̂+
k → θ̂mk (this is the resetting method:

one takes the external measurement ignoring the result of
integrating the differential equation).

If the external measurement is of very bad quality (R is very
large), then P+

k → P−
k , K → 0, and thus θ̂+

k → θ̂−k (the
estimation is just the result of integrating as if there was no
external measurement).

If it happens that P−
k → R, this is, the a priori estimation and

the external measurement have the same level of error, then

P+
k → R/2, K → 1/2, and then θ̂+

k →
θ̂k+θ̂−k

2 (one takes the
average between the integration step and the external
measurement; note that the error is halved).
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter: additional considerations

This is a considerable simplification because only a 1-D linear
case has been considered.

Next the n-D linear case will be studied, the the nonlinear
case (addressed by linearization), and finally a special case
involving quaternions.

In any case, conceptually all are the same: one integrates the
kinematic differential equation with the gyroscopes and when
obtaining an external measurement, the Kalman algorithm is
used to weight the a priori estimation and the measurement.

In aircraft and missiles Kalman Filtering is used to integrate
the use of IMUs (gyros+ accelerometers) with external
measurements such as GPS.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter for linear systems

Next the KF will be explained for linear systems which are
continuous with discrete measurement.

All systems are in practice discrete, however, this explanation
is simpler conceptually speaking and can be easily
implemented in a lab setting.

In the nomenclature of KF, a system is known as a “process”.

Note that the following development is conceptually very
similar to the 1-D example, but more abtruse in terms of
notation (and the number of involved matrices).

KF is used in many engineering contexts (e.g. navigation,
orbital mechanics, tracking...). It is a very useful tool to know.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

System model (linear case)

PROCESS: The process is continuous
ẋ(t) = A(t)x(t) + B(t)u(t) + D(t)ε(t), where x is a Gaussian
process of dimension nx , A(t) is a matrix (that could be
time-varying) of dimension nx × nx , ε(t) is Gaussian white
noise of dimension nε and convariance Q(t) (process noise),
and D(t) is a matrix es una matriz (that could be
time-varying) of dimension nx × nε. u(t) if it exists is some
input (e.g. gyro measurement) of dimension nu and B(t) is of
dimension nx × nu.
MEASUREMENT: In discrete times t = tk a measurement z
is taken, defined as follows: z(tk) = Hkx(tk) + ν(tk), where z
is of dimension nz , Hk is a matrix (that could be time-varying)
of dimension nz × nx , and ν(tk) is Gaussian white noise of
dimension nν and convariance Rk (measurement noise).
In addition ν(tk) and ε(t) should be independent and the
initial condition of x is x(t0) ∼ Nnx (x̂0,P0).
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

System model (linear case)

Summarizing:

ẋ(t) = A(t)x(t) + B(t)u(t) + D(t)ε(t),

z(tk) = Hkx(tk) + ν(tk),

E [ε(t)] = E [ν(tk)] = 0,

E [ε(t)εT (τ)] = δ(t − τ)Q(t),

E [ν(tk)νT (tj)] = δkjRk ,

E [ε(t)νT (tj)] = 0,

x(t0) ∼ Nnx (x̂0,P0).

Define the estimation (in t) of x(t) as x̂(t).
Define the covariance of the estimation error as
P(t) = E [(x(t)− x̂(t))(x(t)− x̂(t))T ].
The goal of KF is, using the above model, and from the
measurements z(tk), obtain the best possible estimation, this
is, the value of x̂(t) that minimizes P(t).
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF I

If there are no measurements one can take x̂ as the mean of
the process; then, x(t) ∼ Nnx (x̂(t),Pk), where:

˙̂x(t) = A(t)x̂(t) + B(t)u(t),

Ṗ = A(t)P + PAT (t) + D(t)Q(t)DT (t).

The idea of the KF is that this is the best we can do until we
get a new measurement at t = tk , z(tk). Denote the
estimation until then (the “a priori” estimation) as x̂−(tk)
and the covariance of the error as P−

k .

Now if the estimation and measurement were perfect, one
would have z(tk) = Hk x̂

−(tk). However, since this is not the
case, one updates the estimation (obtaining the “a posteriori”
estimation) proportionally to the discrepance between what
we expect to measure and what we really measure:
x̂+(tk) = x̂−(tk) + Kk(z(tk)− Hk x̂

−(tk)).
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF II

In x̂+(tk) = x̂−(tk) + Kk(z(tk)− Hk x̂
−(tk)) we don’t know

Kk , which is the Kalman gain. This is determined to
guarantee that he covariance of x̂+(tk), P+

k , is as small as
possible.

Compute P+
k : P+

k = E [(x(tk)− x̂+(tk))(x(tk)− x̂+(tk))T ],
and replacing x̂+(tk):

P
+
k

= E

[(
x(tk ) − x̂

+(tk )
) (

x(tk ) − x̂
+(tk )

)
T
]

= E

[(
x(tk ) − x̂

−(tk ) − Kk (z(tk ) − Hk x̂
−(tk )

)

×
(
x(tk ) − x̂

−(tk ) − Kk (z(tk ) − Hk x̂
−(tk ))

)
T
]

Substituting z(tk) = Hkx(tk) + ν(tk):

P+
k = E

[(
x(tk ) − x̂−(tk ) − Kk (Hk x(tk ) + ν(tk ) − Hk x̂

−(tk )
)

×
(
x(tk ) − x̂−(tk ) − Kk (Hk x(tk ) + ν(tk ) − Hk x̂

−(tk ))
)T ]
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF III

Simplifying terms:

P+
k = E

[(
(I − KkHk )(x(tk ) − x̂−) − Kkν(tk )

)
×
(

(I − KkHk )(x(tk ) − x̂−) − Kkν(tk )
)T ]

= (I − KkHk )P−k (I − KkHk )T + KkRkK
T
k

One needs to find Kk to minimize the previous expression.
However one cannot “minimize a matrix” (what does that
even mean?). However, since the diagonal of the covariance
matrix is the individual variances, one idea is to minimize the
trace of the matrix.

The following mathematical relations help a lot:

∂Tr[ABAT]

∂A
= 2BAT ,

∂Tr[AB]

∂A
= B
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF III

Using these relations:

Tr[P+
k ] = Tr[Kk(Rk + HkP

−
k HT

k )KT
k ]− 2Tr[KkHkP

−
k ]

Thus:

∂Tr[P+
k ]

∂Kk
= 2(Rk + HkP

−
k HT

k )KT
k − 2HkP

−
k

Equating to zero:

KT
k = (Rk + HkP

−
k HT

k )−1HkP
−
k

Therefore we find an expression for the optimal Kalman gain

Kk = P−
k HT

k (Rk + HkP
−
k HT

k )−1

And substituting in P+
k to find the minimum we get

P+
k = (I − KkHk)P−

k
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF algorithm

Summarizing the algorithm:

1 (Initialization): In t = tk , we start from x̂+(tk) and P+(tk). If
k = 0 we take x̂+(t0) = x̂0 y P+

0 = P0.
2 (Propagation): For t ∈ (tk , tk+1), use the process model:

˙̂x = A(t)x̂ + B(t)u(t), x̂(tk) = x̂+(tk)

Ṗ = A(t)P + PAT (t) + D(t)Q(t)DT (t), P(tk) = P+(tk)

3 (Update): In t = tk+1 we get z(tk+1), call x̂−(tk+1) = x̂(tk+1)
and P−(tk+1) = P(tk+1). Compute the Kalman gain:

Kk+1 = P−k+1H
T
k+1

(
Hk+1P

−
k+1H

T
k+1 + Rk+1

)−1
. With z(tk+1)

compute the a posteriori estimation:

x̂+(tk+1) = x̂−(tk+1) + Kk+1(z(tk+1)− Hk+1x̂
−(tk+1)),

P+
k+1 = (I − Kk+1Hk+1)P−k+1.

4 Iterate for the next value of k .
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

About measurements

Note: Measurements may change in the different tk ’s (more
or less measurements).

This is reflected in changes in Hk (it can even change
dimension).
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter for nonlinear systems

Next the EKF will be explained for nonlinear systems which
are continuous with discrete measurement.

The main tool is to linearize around the estimation.

Unfortunately convergence is not guaranteed.

If the initial estimation is good, the errors are not too large,
and the measurements are of decent quality, it should work.
However it is very dependent on the quality of the matrices Q
and R.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

System model (nonlinear case)

The model is more general:

ẋ(t) = f (x , u, t) + D(t)ε(t),

zk = h(xk , tk) + ν(tk),

E [ε(t)] = E [ν(tk)] = 0,

E [ε(t)εT (τ)] = δ(t − τ)Q(t),

E [ν(tk)νT (tj)] = δkjRk ,

E [ε(t)νT (tj)] = 0,

x(t0) ∼ Nnx (x̂0,P0).

Define the matrices and vectors: F (x̂(t), t) = ∂f (x ,u,t)
∂x

∣∣∣
x=x̂ ,u

,

δzk = zk − h(x̂k , tk), Hk(x̂k) = ∂h(x ,tk )
∂x

∣∣∣
x=x̂k

.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

EKF algorithm

The EKF is as follows:
1 (Initialization): In t = tk , we start from x̂+(tk) and P+(tk). If

k = 0 we take x̂+(t0) = x̂0 y P+
0 = P0.

2 (Propagation): For t ∈ (tk , tk+1), use the (nonlinear) process
model:

˙̂x = f (x̂ , u, t), x̂(tk) = x̂+(tk)

Ṗ = F (x̂(t), t)P + PFT (x̂(t), t) + D(t)Q(t)DT (t), P(tk) = P+(tk)

3 (Update): In t = tk+1 we get z(tk+1), call x̂−(tk+1) = x̂(tk+1)
and P−(tk+1) = P(tk+1). Compute
δzk+1 = zk+1 − h(x̂−k+1, tk+1) and Hk+1 = Hk(x̂−k+1, tk+1).
Compute the Kalman gain:

Kk+1 = P−k+1H
T
k+1

(
Hk+1P

−
k+1H

T
k+1 + Rk+1

)−1
. Then:

x̂+(tk+1) = x̂−(tk+1) + Kk+1δzk+1,

P+
k+1 = (I − Kk+1Hk+1)P−k+1.

4 Iterate for the next value of k .
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Multiplicative Extended Kalman Filter (MEKF)

This is specific for attitude estimation.

The EKF can be altered to take into account that the
quaternions cannot be linearized in the standard way, but
rather using the quaternion error (in a multiplicative way).
Then one gets the MEKF.

1 Assume one has gyros in the 3 axis, so that angular velocity
ω̂B
B/N is estimated, with white noise error of covariance Q.

This is assumed as continouous.
2 At instants tk one gets measurements of n directions in body

axes v̂B
i , so that vB

i = CB
N vN

i and vB
i = v̂B

i + εi for
i = 1, . . . , n. εi is Gaussian white noise with covariance Ri .

With only measurements one could use TRIAD or the q
algorithm.

With only gyros the estimation would be ˙̂q = 1
2q ? qω̂.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Multiplicative Extended Kalman Filter (MEKF)

To linearize kinematics remember the quaternion error
q = q̂ ? δq, with

δq(a) =
1√

4 + ‖a‖2

[
2
a

]
, ȧ ≈ ν + a× ω̂ = −ω̂×a + ν.

Thus one can study the covariance of the vector a which
represents the error:

Ṗ = −ω̂×P + Pω̂× + Q, P(0) = P0
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Multiplicative Extended Kalman Filter (MEKF)

From the estimated quaternion q̂ one can get ĈB
N (q̂)

(Euler-Rodrigues).
Call δzi the discrepance between measurement and expected
measurement: δzi = v̂Bi − ĈB

N (q̂)vNi . If everything was perfect
then δzi = 0.
Measurement is not pefect: v̂Bi = vBi − εi .
Estimation is not perfect: ĈB

N = C B̂
N = C B̂

B CB
N .

Thus δzi = vBi − C B̂
B vBi − εi .

Remember that from the relationship between the error

quaternion and the small angles DCM: C B̂
B = I − a×, thus

δzi = −a×vBi − εi = (vBi )×a− εi .
Thus we have n measurements of error in the form
δzi = Hia− εi , where Hi ≈ (v̂Bi )×. (NOTE: take only two
rows to avoid invertibility issues). The covariance of the
measurement is Ri .
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Multiplicative Extended Kalman Filter (MEKF)

Use the a priori (−) and a posteriori (+) notation. From
integration we had q̂− with error a− whose covariance is P−.

With the measurements available from

δz =

[
δz1

.

.

.
δzn

]
,H =

[
H1

.

.

.
Hn

]
,R =

[
R1

. . .

Rn

]

Using the measurements a+ = a− + K (z − Ha−), but since
the mean of the error is zero, a− = 0, thus: a+ = Kδz , where
K is the Kalman gain, computed as
K = P−HT (HP−HT + R)−1. Covariance is updated as
P+ = P− − KHP−.

With a+ update q̂:q̂+ = q̂− ? δq = q̂− ?

[
2
a+

]
1√

4+‖a+‖2

This procedure is iterated.
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1-D Kalman Filter example
General linear Kalman Filter
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Summary. Initial data: q̂0, P0, Q, Ri . One considers ω̂
continuous. Ocassionally, one gets measurements and thus
can compute δzi = v̂Bi − ĈB

N (q̂)vNi .
1 Initialize and compute q̂ and P:

˙̂q =
1

2
q ? qω̂, q(0) = q0,

Ṗ = −ω̂×P + Pω̂× + Q, P(0) = P0

2 At time t = tk one gets measurements, call q̂− = q̂(tk)
and P− = P(tk). Compute δz , H, R. Compute
K = P−HT (HP−HT + R)−1. Compute a+ = Kδz .
Update q̂+ = q̂− ? δq = q̂− ?

[
2

a+

]
1√

4+‖a+‖2
, P+ = P− − KHP−.

3 Keep integrating the equations from the a posteri
estimations until more measurements arrive:

˙̂q =
1

2
q ? qω̂, q(tk ) = q+

,

Ṗ = −ω̂×P + Pω̂× + Q, P(tk ) = P+

4 When new measurements arrive, go back to 2. 32 / 33
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Additional ideas:

Don’t forget to renormalize q̂(t) if modulus goes away from
unity.
The covariance matrix P(t) must be symmetric. One can
“symmetrize” by forcing P = 1/2(P + PT ), or compute only a
triangular matrix and impose the rest is the transpose.
The Kalman gain is optimal only for the linearized system. If
estimation has large errors, the filter may diverge.
One can and should include gyro bias in the estimation.
In practice it is not so easy to obtain Q and R so some
simulation/experiments are required.

Other filtering algorithms exist. MEKF is “simple” and
flexible but not necessarily the best (this is a research field).

In a lab we will test the MEKF with a cell phone.
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