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FoEiems] ehmemics Preliminary definition from Mechanics

Euler’'s Equations

Spacecraft attitude dynamics

m Spacecraft attitude dynamics are given by the equations of
rotational dynamics. These describe the relation between
causes (torques exerted on the vehicle) and effects (angular
velocity). Solved together with kinematics.

m Main hypothesis: The vehicle is a rigid body (rigid-body
hypothesis). If there are flexible/mobile parts, the model
needs to be extended to include them. Thus we can define the
rotation of the body frame (fixed at the center of mass of the
body) w.r.t. the inertial frame, as in previous lessons.

Newtonian
Reference
Frame
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FoEiems] ehmemics Preliminary definition from Mechanics

Euler’'s Equations

Angular momentum and Torque |

N

Newtonian
Reference
Frame

m For each point of the body with mass dm, one has Rdm = dF.

Taking moment with respect to the center of mass B, we get

0 X Rdm = 0 X dF = dl\ﬁg, and integrating over the volume
V, we get a relation involving the total moment of the forces
with respect to B (the total torque): [\, 7 X Rdm = M;g.

m Notice that these time-derivatives are considered w.r.t. the
inertial frame.



FoEiems] ehmemics Preliminary definition from Mechanics

Euler’'s Equations

Angular momentum and Torque Il

N

Newtonian
Reference
Frame

m The absolute angular momentum with respect to B, FB, IS
defined as: (g = fvp x Rdm.

= Note FB —fvpx Rdm+fvpx Rdm
m Since R = RC + p, replacing it in the first term we get:

FB —fvpx pdm—|—fv,0>< Rcdm—|—MB
m [ he first term is zero. The second verifies

fvﬁx F_écc{m:(%fvﬁdm)xf_écza. -
m [herefore FB — MB 459



FoEiems] ehmemics Preliminary definition from Mechanics

Euler’'s Equations

Angular momentum and Inertia |

N

Newtonian
Reference
Frame

m [he angular momentum [ g verifies

[ = Iy 7% Rdm = Iy P’ ﬁcdm+fvﬁxﬁdm: fvﬁxﬁdm.
m Remember Coriolis’ equation (%ﬁ)N = (%ﬁ)B + Wp/N X P,
where N is an inertial frame and B the body axes. Then,
(%ﬁ)/v = WB/N X P
m [ herefore:
(8= [y, 7 x(Jg/n x p)dm = (— [, p*p*dm)dg/n
m Define the inertia tensor

T=— [, dm= [, [(pT7)Id - ppT] dm /59
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FoEiems] ehmemics Preliminary definition from Mechanics

Euler’'s Equations

Angular momentum and Inertia Il

Newtonian
Reference
Frame

m ThusTg =7 wpg/n- The explicit expression of the inertia

i Sy (5 + p3)dm _f\§ Plpgdm — [y p1p3dm
tensor i1s 1 = — [y pip2dm [, (p7 + p3)dm _f\§ pngdm
— [y p1p3dm — Jy p2pzdm [, (p1 + p3)dm

m Since the matrix is symmetric: it is diagonalizable. Thus one
can find the principal axes where Z is diagonal:

L 0 0 ]
=10 h O
0 0 &

m The largest moment of inertia /; is about an axis which is
denoted as major axis; the smallest, about the minor axis.
The remaining one is about the intermediate axis.

L
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FoEiems] ehmemics Preliminary definition from Mechanics
Euler’'s Equations

Angular momentum and Inertia |l

m Assume we have a vehicle composed of n parts, each of them
with known mass M,, center of mass ro and inertia tensor
Zi. Then one can find the inertial tensor of the spacecraft as

=" | M (|17l Pl — 77 ) + T
k=1

m Note that rz. is the vector joining the center of mass of the k
part with the whole spacecraft center of mass.

m Spacecraft are formed by a number of structural elements so
this is a widely used formula. However, we will not need it in

general for our lessons.
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Rotational dynamics

Preliminary definition from Mechanics
Euler’'s Equations

Kinetic energy

N

Newtonian
Reference
Frame

m Kinetic energy is defined as T = %f\/ﬁ pdm.
m Using (%,5_’),\, = &g/N X P, we get |
I = %f\iﬁ' (Wg/n X p)dm = %QB/N - Jy (P x p)dm =
5@ /N - Te = 50g/N T &g/n.
m In principal axes, if dg/n = [w1 w2 ws] ", one gets:
i w1/1 |
= | wah

| wshs |
w%ll -+ UJ%IQ + w§/3
2

m [hus: T =

L

o1 (
O



FoEiems] ehmemics Preliminary definition from Mechanics

Euler's Equations

Euler's Equations

m Start from r = M. Since the time-derivative is in the inertial
frame, taking it in body axes we get:

dr L dr — Y
(EF)N _ (mr)BwB/,\, « F = M.

m Replacing the expression of angular momentum in terms of

—

the inertia tensor: (%I-(IJ’B/N)B +dgn X (T-dg/y) =M
m Using the rigid-body hypothesis (5Z), = 0, we get:

T Gpn + @y T - Gayn = M.

m Developing in principal axes and writing M = My My M3]T

hwi + (b — b)wows = M
bhwy + (h — B)wiws = M
hws + (b — h)ww; = Ms
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-Free rotation

Our first detailed study is of torque-free rotation, this is, when
torque is zero: M = 0. Under this assumption, the angular
momentum of the system is preserved.

This does not ever happen in reality since there are always
some small perturbing torques (albeit they can be small).

We will see some analytical solutions but the most interesting
results are those concerning the stability of the rotation; in
particular, we will find the major axis rule.

We consider two cases: axisymmetric (two equal moments of
inertia: the spinning top) and asymmetric (the three moments
of inertia are different)

The totally symmetric case (b = I, = I3) decouples Euler’s
equations and can be trivially solved (the resulting angular
velocities are constant and independent from each other). Y

10 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.
m Consider h =hb=1,1#1I.
m Euler’'s equations now read:
lwi + (5 — Nwaws = 0
lwr + (I — B)wiws =
hws =

m First, we obtain w3 = Cst = n (spin rate of the spacecraft

about it symmetry axes). Define \ = %n, denoted as the

“relative spin rate”. The first two equations result in

w1 — Awy = 0
wr +Awy; = 0
This is the ODE of a harmonic oscillator, whose solution is:
w1 = wi(0)cos At + w(0)sin At
wr = w2(0)cos At —wi(0)sin At

fme
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

m It is easy to see that wi + w3 = Cst = wi,, the so-called

transverse angular velocity. Thus, ||w|| = \/wfz + n? = Cst

and its third component is also constant. Therfore, W seen in
the body frame describes a cone about the body symmetry
axes, of angle v = arctan (%)

m On the other hand T = Cst in the inertial frame by
conservation of angular momentum. We choose the z axis of
the inertial frame as pointing in the direction of r (I—7 in the
figure). In addition I = ||T|| must be constant as well.

m In body axes, [ = [lwy lwo I3n]7, so that

r. eZ = lzn = cos I, this is, the angle between [ and the
body z axis is constant; this angle, 8, is the nutation angle. In
addition:

V1—cos?d /T2 —1n*  lwp _ |
tan -y -
cos 6 lsn I3n A L
m Exercise: prove that the angle between [y & is § — v = cst. 12/

tanf =



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

m Thus the situation is as in the figure (where H = T).

/ Line of Nodes

m This justifies introducing Euler angles to describe the
movement, in the sequence (3,1,3), where one already knows
that 6 = Cst.

255 % ¢ ¢/>BF5
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule

Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

m For the sequence

2,5 % g ¢/>BFS

the kinematics are, replacing 8 = Cst:

wy = gﬁsin&sinzbJrH.coswzésinesinw
wr = sinfcost) —Osin) = ¢ sinb cos
w3 = 1+ dcosh

= Applying w? + w3 = w?, we obtain: wip = ¢sinf. Thus

q?: e = Cst, the precession rate. Finally

p=n—¢cos =n— 21 =pn— b0 —pl=h )\ — Cgt.

tan6 _ _I /
. . ) w12 __ I3n . I3(¢+¢C059)
m Similarly ¢ = 2ls = 0 = reocg—» from where
95 _ l31
(I—1)cosf-

(me
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Geometrical interpretation.

Line of Nodes

n-2,5-% ¢ % BFs
zhn XS 25/

m Considering the sequence and taking into account the fact
that the nutation angle is constant and the other two angles
change uniformly, one can imagine the movement as the
rolling of one cone over another without slipping (with
constant angular speeds gb and 1#) the point of contact is .

Ty,

where the angular velocity @ lies. 15 /59



Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Geometrical interpretation.

Ho A
A

(a) Prograde precession (b) Retrograde precession

m Remember tan~vy = tan 9’3 y ¢ = = Ils)wcosﬁ Two cases arise:
m Prolate body (thin symmetry axis, /3 < I): this is case (a).
Since v < 6 the cones roll one outside the other and since the
signs of ¢ and 1) are equal the rotation is in the same direction
(prograde precession).

m Oblate body (thick symmetry axis, /3 > [): this is case (b).
Since v > 6 the cones roll one inside the other and since the

signs of ¢ y ¢ are opposite the rotation is in the opposite -
direction (retrograde precession). 1659




Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-free rotation of an asymmetrical body

m In the asymmetrical case, there exists a major, minor and
intermediate axis. The equations cannot be solved in terms of
conventional functions.

lLwy + (/3 — /2)002003 = 0
Ihwo + (/1 — /3)&)1(,03 = 0
l3ws + (/2 — /1)w2w1 = 0

m Some authors solve these equations by using Jacobi's
“elliptical functions”. However, it is not easy to
understand/interpret these functions, so we take a more
“geometric” path.

m Notice that, due to conservation of angular momentum, [is
constant (in inertial axes). Therefore ||| = I is constant no
matter what axes are used to write T. In particular, in the
body frame, [ = [hwt bws kuws]”, therefore o
[2 = Ilzw% + I22w% -+ I32w§ = (Cst. 17 /50



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-free rotation of an asymmetrical body

m Similarly, in torque-free rotations the kinetic energy T is also
preserved. Which impliese 2T = hw? + hws + hw$ = Cst’

m Therefore the components of the angular velocity, wi(t),
wo(t), wi(t), no matter their values, must satisfy

2 2 2
Wi Wy w3
[2 [2 [2 T
Z 2 R
2 2 2

W1 ) W3
27 T 2T T oT
i I> I3

m T hese are the equations of two ellipsoids: the angular
momentum ellipsoid and the kinetic energy ellipsoid. Thus the
angular velocity vector must always lie in the intersection of
these two ellipsoids; these intersections are known as “polhode
curves' .

Ty,

18 /59



Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Polhode curves

m In general the curves, for given ellipsoids, are two disjoint,
closed curves.

A,

— . P
Trajectory of
possible w(¢)

Energy Ellipsoid

Momentum

m In two cases the intersection reduces to two points: when the
ellipsoids are tangent. These cases correspond to maxima or
minima of the energy. In addition, there is a saddle point
when the intermediate axes coincide, and the resulting curve -

is called the separatrix. 19 /59



Polhode curves:

Torque-Free rotation
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(i) Minimum Energy Case

H,

H;

Analytical /geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics
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(ii) Intermediate Energy Case

H,

Maximum
Energy
Ellipsoid

(iii) Maximum Energy Case
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-free rotation of an asymmetrical body

m Assume that 5 < hh < h; (if not re-index the axes). Define
[* = % Subtracting the ellipsoid equations and multiplying
by I, one gets:

hw? (= 1%) + bws (b — I*) + hws (I3 — 1*) =0

m Note that if /* < /3 all terms are positive (for non-zero
angular speed) so they cannot add to zero. Similarly if I* > &
all terms are negative. Thus, I* € [/5, l1]. For fixed I, this
implies that kinetic energy has to lie inside an interval. The
extrema are /* = [; (minimal energy, implies wp, = w3 = 0 and
thus a rotation about the 1 axis, the major one) and /* = I3
(maximal energy, implies w; = wy = 0 and thus a rotation
about the 3rd axis, the minor oner)

m The case I* = |, has additional solutions besides pure
rotations about the 2 axis (w; = w3 = 0); these are called
separatrices.

jme
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Polhode curves for fixed [

m If [ (H in the figure) is fixed and we vary the energy, we
obtain all possible polhode curves over the surface of the
momentum ellipsoid, including the separatrices.

Maximum g2

Energy T = —
gy 21,

Sepratrix

Ty,
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Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule

Effect of a wheel on rotational dynamics

Stability of spinning spacecraft about a principal axis

m [ he simplest solutions of torque-free motion are pure
rotations (spins) about a principal axis. Next, we start from
the solution of equilibrium w3 = n = Cst and &w; = & = 0.
We study the stability of this equilibrium as a function of
whether the 3rd axis is major, minor or intermediate.

m Let us perturb the equilibrium, defining wi; = dwq, wr = dw>
and w3 = n+ dws. Substituting in Euler's equations:

l10wy + (/3 — /2)5(4}2(” + 5(,03)
[owy + (/1 — /3)5&)1(/7 + 5&)3)
0wz + (I2 — 11)56,025(,(}1

m Neglecting second-order terms:

/1(502)1 + n(I3 — /2)5(4}2 =
[owy + n(11 — /3)5(4}1 =
Rows =

0
0
0

fme
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Stability of spinning spacecraft about a principal axis

The equation of dws defines a marginally stable equilibrium:
the perturbed solutions don't grow, but they don't dissipate
either.

The equations for dw; and dws can be combined as

n’(l — hb)(l — 1)
h 1l

The stability of the solution to this equation depends on the

sign of (I3 — h)(/3 — I1). For a positive sign, solutions are

oscillatory (again, they don't grow or dissipate: marginally

stable). If the sign is negative, the solutions are exponential

and one of the solutions grows in time (unstable)

If 3 is the major axis: (5 — h)(ls — h) =+ x + > 0: stable.

01 + ow; =0

m If 3 is the minor axis:(l3 — h)(l3 — ) = — x — > 0: stable.

m If 3 is the intermediate axis:, (/3 — /2)(/3 — /1) =+ x —<0:

unstable. LR
24 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Stability of spinning spacecraft with energy dissipation

m While the previous calculation is correct under a rigid-body
assumption (Euler's Equations), real-life solids are not
perfectly rigid.

m There is always some deviation from the rigid body that can
cause some energy dissipation (flexibility effects, friction
between mobile parts, fuel sloshing). This modifies the
previous calculation as the system tends to go to an energy
minima.

m Assume again /1 > I, > I3. One idea (energy sink model) is
to, starting from physical principles (conservation of angular
momentum), find a minima of energy given the angular
momentum. This is, solve the mathematical minimization
problem

min /160% + IQCU% + /3(,0%

subject to [fw? + Fws + IFws =7 LR
25 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Stability of spinning spacecraft with energy dissipation
m Using Lagrange multipliers:
L(w1,ws,ws, )\) = hw? + hws + w3 + AIfws + 13w + I3ws —T2)

m One has 0 = % =2lwi(1+ M), i=1,2,3
m [ herefore there are three solutions:

_ 1 _r r_r

B wr—w3=0, A\ = —, W1 = T—2121.
PN _ 1 _ I .

m wi—=w3=0, A\ = pow2=1p. T =5
_ _ 1 _r _r

B wi=wr=0, A W3 =1 T_2/3'

m Comparing the values of the objective function (the energy),
clearly the minimum is given by the first solution (the second
is a saddle point and third one is the maximum). Thus the
only spin which is mathematically stable and at the same time
a minimum for the energy are rotations about the major axis.

m Based on this argument, we can now state the major axis rule:
“For spacecraft with dissipation of energy, the only stable o

spins are those about the major axis". 26/;—:



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Stability of spinning spacecraft with energy dissipation

m The geometrical effect of the major axis rule is that polhodes
become a single closed spiral curve that goes from the
maximum of energy to the minimum of energy:

w3

m

Separatrices

27 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Example: fuel sloshing

m Consider a satellite with a spherical tank filled with viscous
fuel, so that the fuel (with inertia J and friction coefficient A)
can be modelled as a “solid bubble” with its own angular

speed & = [01 02 03] relative to the satellite.

m ExtraCstd from C.D. Rahn, P.M. Barba, “Reorientation
Maneuver for Spinning Spacecraft”, AIAA Journal of
Guidance, Dynamics and Control, Vol. 14, 1991.

(h — w1+ (B — bh)waws = Aoy
(b — Nwo +(h — B)wiwz = Ao
(h —Nw3 +(h — h)ww; = Aoz
. . Aoy
01 + w1 + wro3 — w307 = —T
. . Aoy
02 + wp + w301 — w103 = —T
Aoj

03 + w3 + w109 — woo1 = —T

m By dissipation, any starting spin ends up a major axis spin;
however, it is not possible to know a priori the orientation of
the rotation, since the equations display strange (chaotics) L
dynamics. 28 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Example: fuel sloshing

m The fact that the equations have chaotic dynamics means
that the sense of rotation totally depends on the initial
condition, to the point that any change on the initial
condition, no matter how small, can produce a variation in the
sense of rotation.

m Thus, to all practical effect, it is not
possible to predict the final sense of
the rotation.

m A plot in which one marks with the
same color the initial conditions
producing the same sense of rotation
becomes enormously complex, due to
this chaotic property of the equation.
These kind of plots are known as
fractals.




Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Major axis rule. Additional comments.

The instability of minor axis spinners is, from the point of view
of time-scales, much slower than the instability of intermediate
axis spinners, depending on the rate of energy dissipation.

If one desires a major axis spin one can amplify energy
dissipation by adding dampers, such as nutation dampers
(pendula with added friction).

However, if for some reason one needs a minor axis spin this is
no issue if it is only required for a short period of time and
dissipation is not too large. Later the body will return to a
major axis spin naturally.

Important: the presence of mobile part such as inertia wheels
may change these theoretical results.

(me
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Rotational dynamics with a wheel

m Let us start with how Euler’s equations are modified by the
presence of k wheels.

m For each wheel /, assumed axisymmetric, define Ig; as its
momentum of inertia in the rotation direction €; and its
relative (to the spacecraft) angular speed as wg;.

m Since a wheel is symmetric, it does not change the distribution
of mass: total spacecraft inertia does not change at all.

M The angular moment of the spacecraft + wheels is:
[ = IwB/N + Z o €i o [ piWR;

m Expressing the derivative [ = M in the body frame one can
obtain the differential equations of motion.

31/59



Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule

Effect of a wheel on rotational dynamics

Three wheels in principal axes

m If there is a wheel about each principal axis, the spacecraft

angular momentum is I' = Zdg /y +

m [hus the dynamics is given by

hwy + (B — h)waws + Ir1wrt + IR3wr3w2 — Irpwrows3
hwy + (h — B)wiws + Irowro + IR1WRIW3 — IR3WR3WL
ws + (h — h)wawi + IrR3wr3 + Irowrow1 — IR1IWRIW?
m One needs to add the equations describen the wheels’ spin.

For instance, if for each axis an electric motor with (internal)
torque Jg; drives the wheels, these equations would be

Ir1(w1 + Wr1)
Iro (w2 + Wro)
Ir3 (w3 + WRr3)

wr1lRr1
wWr2IR?

- wr3lr3 |

32/59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

One wheel about the 3rd axis

m Assume that a spacecraft has an inertial wheel about the 3rd
axis, with inertia /g, and spinning at a velocity wg relative to
the spacecraft. It could even be a part of the spacecraft (see
dual spin-stabilization in lesson 7).

m Angular momentum is [ = [hwi hws hws + lrwr] "

m Rotational dynamics become

hwi + (h — b)waws + lrwrwa = 0
hwy + (h — B)wiws — lrwrwi = 0
hws + Irwr + (b — h)wow1 = 0

m One needs to add /Igr(w3 + wgr) = J, where J is the torque
driving the wheel (if any).

33 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel.

One can use the motor to produce a torque that mantains wg
constant. Then:

hwi + (b — h)wws + lrwrwy, = 0
Iwo + (Il — /3)(,01(,03 — lpwrwy; = 0
lzws + (/2 — /1)(,020}1 = 0

New terms appear that modify the previous stability analysis.
Even the intermediate axis can be made stable! Repeating the
steps for mathematical stability:

n (n(l3 — /2) + IRwR) (I‘I(Ig — /1) + IRwR)

5
1 hh

5001:0

Now if 1 is the minor axis and 2 the major, the condition for
stability is n(/3 — h) + Irwgr > 0, this is, wg > %n.

Next, we repeat the analysis in the case of energy dissipation
by using the energy sink method. LR

34 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation.

m Let us minimize the energy fixing the angular momentum
(since it is a torque-free motion).

m [hen

2T = /1(,0% + /2(,0% + /3&)% -+ /Rw%,

I'2 — /12(,0% —+ /2200% —+ (/3&)3 —+ IRwR)2

m The last term of the energy can be ignored since it is a
constant and does not influence the minimization process.
The problem is posed as

min hw? + hws + kw3
- 2 2 | 2 2 2 _ 2
subject to K wi + w5 + (w3 + lrwgr)” =T

(me
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Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation.

m Using Lagrange multipliers
L(wy, wp, w3, A\) = Ilw% + Izwg + Igcu% + A(Ilzw% + 122w§ + (hws + IRwR)2 — r2)
m One gets 0 = (%, =2lwi(1+ X)), i=12y

— % — 2/3((,03 —+ )\(/3(,03 + IRwR))
m Several solutions exist, we take

n
lan + lrwpr .
m To identify if it is @ minimum or not, we use the following
theorem: Let L(x,y,z) = F(x,y,z) + AG(x,y, z) be the

Lagrangian of the system so that F is the function to
minimize and G(x, y, z) = 0 the constraint. Then, construct

the matrices:

wlzwzzo, w3 = N, A=

0 oG oG oG
0 oG oG Ox 82y Oz
X oy 86 2L 2L 2L
oG 821 o4L Ox Ox Ox0y Ox0z
Hsy = dx 8>2<2 dxdy , Ha = aG 2L 82L 2L )
oG %L 2L Dy OxDy 9v2 dydz
By  9xBy 92 96 9% 02, 82L =
Oz Ox0z OyOz 8522 —

36 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation.

m If x*, \* is the critical point under analysis (i.e., the point
that makes the first derivatives of L zero), to determine if
there is a minimum or not, it follows that if:

9 (x*,y*,2*) #0

Det(Hs(x*,y*,z*,A*)) < 0

Det(Ha(x*,y*,z*,A*)) <0
then there is a minimum at the critical point (sufficient
condition, not necessary!).

m In our particular case, to verify the theorem, define x = w3,
y = wi, Z = wy. lhen:

0 213(n + lrwgR) 0
Hs = 213(l3n + lrwg) 213(1 + A1) 0 ,
0 0 21 (1 4+ Ah)
0 2/3(I3n + IrwR) 0 0
H . 2I3(In + lrwg) 213(1 + Al3) 0 0
4 = 0 0 211 (1 4+ \h) 0
0 0 0 2h(1 + Ah)

(me
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation.

m The (sufficient) conditions for a minimum are:
g—f(x*,y*, z*) = 25(kn + l,wgr) # 0 (since if the other two
angular speeds are zero, one has lsn + l,wg = £ # 0).
Det(Hg(x*,y*, Z*7 )\*)) == —8132(1317 + IrwR)zll(l -+ )\Il) <0
Det(Ha(x*, y*,z*, A*)) = Det(H3)2hL(1 + Ah) < 0
m Two conditions are then reached

1+X7 > O,
1+XbL > 0.
m Using the value of X\ that we derived before:
S U]
hhn+ lrwp
/
1—-—2 > o
lhn + lrwr

m One has to be careful with the sign of Isn + Irwr since when
solving for wgr the sign of the inequality can change.

v
I
S,
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation.

m Instead of solving for wr we can simplify the fraction,

reaching:
(/3 — /1)17 —+ /RwR
0,
hn+ lrwr
(/3 — /2)!7 —+ IRwR
0,
hn+ Irwpr

m [ wo cases:

If hn+ lgwr > 0, this is, wp > —52 the conditions reduce to

Ir '
(I1—I3)n (I2—13)n
WR > TR WR > R

If hn+ lrwr < 0, this is, wp < —B2 the conditions reduce

Ir !
(11—13)n (I2—I3)n
towr < 1. WR < I

m Notice that these conditions are similar (but more restrictive)
than the ones obtained without energy dissipation!

(me
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel: Example.
m Consider a satellite with a wheel in the 3rd axis with:

10 0 0
T = 0 30 0 | ke-m?, n=60r.p.m., I =2 kg - m>.

0 0 20

m Need to study the required spinning speed for the weel for the

3rd axis (intermediate) to be stable.
m With the rigid-body hypothesis (no dissipation):
(n(hh — ) — Igwr) (n(ls — h) + Irwgr) < 0. Two cases
First parenthesis is negative, second positive. Conditions

become: wr > M2=5) — 300 1. p.m. and

Ir
WR > "(I")R_Il) — —300 r.p.m.. Since the first condition is more

stringent: wr > 300 r.p.m..
Second parenthesis is negative, first positive. Conditions

become: wr < ”(Izl—R_I:") = 300 r.p.m. and

wRr < "(13,—;/1) = —300 r.p.m.. Now the second condition is
more restrictive, therefore wgp < —300 r.p.m..
m Thus, the spin is stable if wp > 300 r.p.m. or if :
wr < —300 r.p.m., but unstable if wg € [~300,300] r.p.m. .o




Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule

Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation:
Example.

m With energy dissipation, two cases show up again:

If lsn+ Irwg > 0, this is wg > —52 = —600 r.p.m., then

WR > W — —300 r.p.m., wg > W — 300 r.p.m.. The
third condition is more restrictive so wrg > 300 r.p.m..

If lkn+ lgwr < 0, this wg < —5% = —600 r.p.m., then

Ir
wr < W = —300 r.p.m., wg < W = 300 r.p.m.. The

first condition is the more stringent, thus wr < —600 r.p.m..
m Thus, the spin is stable if wp > 300 r.p.m. or if
wr < —600 r.p.m., but unstable if wg € [—600,300] r.p.m..

m Notice in wg € [—600, —300] r.p.m. the two models differ;
however, the model with dissipation is more realistic, so the

conclusion is that the rigid-body model is failing in that
interval of wg!

fme
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Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Non-zero torque spins

m In practice there are always some perturbation torques. While
typically of small magnitude, they might be persistent (such
as gravity gradient which acts in the full orbit at all times).
They might be large as well, for instance in the case of
imperfectly aligned thrusters during manoeuvres.

m We analyze two cases:

m Perturbation torque acting on a spinning solid (gyroscopic

effect).
m Gravity gradient stability.
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Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Spinning body subject to a constant external torque.

m Hypothesis:

m Axisymmetrical spacecraft: [ = 5L = 1.
m Spinning spacecraft with speed n about axis 3, this is, w3 = n.
m Perturbation torque M; constant about the axis 1. No torque

about the other axes.

m Example: spin-stabilized spacecraft making a propulsive
manoeuvre with slight unalignment of the thruster axis with
the center of mass. If there is no spin, the resulting torque
causes an immediate rotation of the vehicle and failure of the
manoeuvre.

m We will see that a spinner acquires the so-called “gyroscopic

rigidity” and the perturbing torque produces a slight
movement of precession and nutation of the spin axis.

43 /59



Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Spinning body subject to a constant external torque.

m Euler’'s equations reduce to

lwi + (/3 — l)w2w3 = M
hbg%—(l—-h)aqag = 0
lhws = 0

m We find immediately w3 = Cst = n and define A\ = %n y

[ = % Two equations remain to be solved:

@1—)\002 - M
wr+Aw; = 0

m Taking time derivative in the first equation and substituting
the second:

o1+ Mw; = 0

(me

m Harmonic oscillator: wy(t) = Asin A\t 4+ B cos \t.
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Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Spinning body subject to a constant external torque.

m Substituting the solution in the 1st equation
wy(t) = Acos A\t — Bsin A\t — L.

m Replacing initial conditions w1(0) and w»(0) we reach:
B = w1(0), A= w2(0) + §. Thus:

wy = (w2(0)+ %) sin At + w1(0) cos A\t = gsin At
wy = (wz(O) + ;) cos At — w1 (0)sin At — % = % (cos At — 1)

where finally we have replaced wi(0) = w2(0) = 0.
m Use now Euler angles

) 0
AN AN N
xn yS

03

ZS/

s BFS

m Developing the kinematic equations we stop at:

. w1 cos O3 — wo sin O3
01 =

cos 0>
92 =  wji sin 03 4+ wp cos O3
é3 = w3 + (—wj cos 03 + wy sin O3) tan 6,

(me
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Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Spinning body subject to a constant external torque.

m Take zero initial conditions for the angles.

m With the expectation that 61 and 6> should be rather small
whereas 03 has to be large (it is the angle of the spin axis) we
replace costr ~ 1y tan 0, ~ 6, (verify later!). Reaching:

él = W1 COS (93 — Wy sin (93
ég = W1 sin 93 -+ Wy COS 83
H-3 = w3+ 92 (—wl COS 63 + w» sin 93) = W3 — 926-1

Assume as well w3 > 0507, then we find 03 = w3t = nt.
m T[he equations for 61 y 0> are:

01 = wicosnt— wssinnt

0> = wisinnt + wycos nt

m Substituting the values of wy and wy previously found:

0 = %sin At cos nt — %(cos)\t— 1)sinnt = %(sin()\— n)t 4 sin nt)
By = ﬁSin Atsin nt + E(cos)\t— 1) cos nt = H(cos()\— n) t — cos nt) =
A A A i 50



Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Spinning body subject to a constant external torque.

m By simple integration and using the initial condition we reach

w /1 —cos(A—n)t 1 — cosnt
0 _( (A—mt )
A A—n n
u(sin(A—n)t sinnt)
02 = — —_
A A—n n

m Defining A, = ﬁ y wp = n— A, amplitude and frequency

of precession, respectively, and A, = % Yy wp = n, amplitude
and frequency of nutation, respectively. The solution is then
written as:

61 = —Ap (1 —coswpt) + Ap (1 — coswnt)

92 = Ap Sin th_An sinUJnt

m Superposition of two circular movements: epicycloid.

m Amplitudes are given by A, = (,_A,”Wé y A, = (I—AIJW and
the gyroscopic effect increases as n, I5/1, and the difference
| — I3 increases. The amplitudes should be small for the

assumptions to be true: large n. —
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Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Gravity gradient.

m The most important perturbation torque is gravity gradient,
as it is always present in orbit.

m Simplification: consider an asymmetrical spacecraft in circular
orbit with radius R around an spherical planets; elliptical
orbits and/or deviations from speherical gravity (i.e. the J,
perturbation) introduce higher-order terms that we do not
analyze (they produce the so-called librations: oscillations
around the stable orientation).

m Angular velocity is defined as usual in body axes with respect
to inertial, but the selected Euler angles are w.r.t. the orbit
frame, which is non-inertial. This subtlety has to be taken
into account in the analysis.

m The situation is as in the figure of the next slide. N axes are
inertial, A axes are from the orbit frame (to be defined) and B

the body axes (principal axes of inertia). L
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Gravity gradient.

m Orbit frame:

Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Orbital Path

centered in the spacecraft. The direction z (33)

points towards Earth's center (rotation:yaw). The direction x
(a1) along the orbital velocity (rotation:roll). The direction y
(3>) opposite to the orbital angular momentum h (orthogonal
to the orbital plane, rotation:pitch).

m These axis spin with respect to the inertial frame N about the

—a, axis with angular speed n = /%5

HD

m Thus the relationship between frames is as follows

—nt 0 0 0
N—SA—=S—"%55 —B

y zA )Y xS’

49 /59



Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Gravity gradient.

Orbital Path

m [he matrix CE and its differential kinematic equation is:

cOrcls3 cOrs03 —s6-
CE = —c61s03 + s01s6>cO3 cO1cO3 + sO1s602s03 sf1cO-
s01s03 4+ cO1s6>cl3 —s61cO3 + cO1s607s03 cO1chr

(9:1 1 cO- s0>s61 sf>cOq B
92 = — 0 C91C92 —891C92 (DB/A
é3 cO 0 sf4 cOq

fme
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Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Gravity gradient.

Orbital Path

m First let us derive the gravity gradient torque. For each dm of
the spacecraft, there is an acting (gravity) force

dF = — iR gm = _ReHD) 4y
R |Rc+ﬁ13

m [ he moment of the forces is therefore:

= — R. 0 R.
M = /deF:—,u/px fe T/ dm:—,u/ P= e um
v v |Re+ g3 v |Re+pl° &




Constant external torque.
Gravity gradient. Stable orientation.

Non-zero torque spins

Gravity gradient.

m Since |p] < |R.

R+ 773 & %—3 <” Then:

R RS
M~ —L R.dm + 3L 3 (R
~ ——53 | pxRedm+3c [ pXxX R(Rc-p)dm
RC 4 c JV
= % P X 'Eéc(ﬁc p)dm = _3—5'Eécx </ ﬁﬁTdm) 'Eéc
c JV 4
LB p 2y \ B 2t fxrp
FeRITR. 3R /V(ym )dm) Re=3peRiTR ¢



Gravity gradient.

Non-zero torque spins

Constant external torque.

Gravity gradient. Stable orientation.

m Thus M = 3 RXZR.. Inthe A axes, RA =[00 — R]".
Thus, in the B frame:

— —392 -
RCB = CER? = —Rc 50106’2
i 091C92 |
i 0 —C(91C92 891092 1T Il
ch1ch> 0 50 0
i —8(91(3(92 —8(92 0 1 L 0
i 0 —C(91C2(92 801(3(92 |
3[72 chch> 0 0
i —891C92 —892 0 i
i —C(91(32(92801(/2 — /3) |
3!‘)2 c91092802(13 — /1)
i 801692392(I1 — /2)

/2 0 S@l C(92
0 I3 C(91(392

—802 /1
S(91C02 /2
i C(91 C92 /3 i
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Non-zero torque spins

Gravity gradient.

Constant external torque.
Gravity gradient. Stable orientation.

m Replacing the gravity gradient torque in Euler’'s equations, we
get ODEs for the angular velocity:

hw
hwy

w3

= [waws — 3n°clicOas01] (b — k)
— :(U1¢U3 + 3n2C91C02892] (/3 o /1)
= |wowy + 3[728(91(3(92892} (h—h)

m On the other hand since

-B

W1
-B _ B
w3

Wg /N = wB/A +wA/N = wB/A + CBwA/N, there follows:

0 w1 i 092893
—n | =1| w | +n cOicls + sb;1s0,s053
i 0 | | w3 | i —s0;cl3 + cH1s0,5053 |

m [ hen the kinematic ODEs are

6:1 1 _C92
92 :7 O
B2 R

8(92861 8(92(3(91 | w1 n 8(93
cOicl> —sbOich- W2 + 7 cO>cls
s6 1 | | w3 | €v2 | Sthstls "
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Constant external torque.

Non-zero torque spins

Stable orientation

Gravity gradient. Stable orientation.

m System of 6 nonlinear ODEs. Making zero the derivatives we

can find the equilibria:

0 = wWoawsz — 3n2C91C292891] (/2 — /3)
0 = _w1w3 + 3n2091092592] (b —h)
0 = -wal + 3n2891C92892] (h — b)

ol
I

— 0 ch1chr —s61cH-

1 092 892891 892C01
c 0 s61 cOq

m One equilibrium is w1 = w3 =0, wp =

w1 n 893
w9 4+ — cOrcls3
w3 c2 s0,s03

—nN, 91 :92 :93 :0,.

Warning:there are other possible equilibria (i.e. 8; = 7).
m If we are close to the equilibrium and to analyze its stability,
we can consider small angles and linealize the equations,

finding
o = - [nw3 + 3n291] (b — 13)
Wy = 3n°0y(l — h)
w3 = —nwi(h — k)
él = w1 + nB3
0 — o
03 = w3 — n01 —
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Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Stable orientation

m Taking a derivative in the angle equations

01 = w1 + n93
6y = Wo
é3 = w3 — nél

m Using these equations to eliminate the w;'s we find

I]_é]_ = — [né3 + 4n291] (12 — /3) + nl]_é3
héy = 3n°6y(l3 — h)
603 = —n(01 — nB3)(h — h) — nk6;

m [ he second equation is stable if /5 < l;. The first and third
are more challenging. Writing the system matrix:

0 0 1 0

01 0 0 0 1 01
d 6 0
L I I S
93 0 n2 Il;’2 n /2_%_/3 0 é3
m Define ky = 278 y kg = 271 Since h + b >k, b+ 13> 11,
1 3 °
lh + I > I, one gets ki, ks € [—1,1]. -
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Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Stable orientation

m [he matrigx writes
1

0 0 1 0 01

d 03 0 0 0 1 03
4| 61 |~ { —4n’ky 0 0 n(1 — ky) ] { 61 }

é3 0 —n2k3 n(k3 — 1) 0 é3

m Studying the eigenvalues of the matrix, we find the
characteristic polynomial:
M+ X2n%(1 + k(3 + k3)) + 4n*k k3 = 0, cuya solucién es:

\ — in\/—(l + ki(34 k3)) £ /(1 + ki(3 + k3))? — 16k k3
2

m Eigenvalues are stable (non-positive real part) if and only if
the two options insde the square root are real and negative,
thisis: —(1+ k1 (34 k3)) = /(1 + k1 (3 + k3))2 — 16ki k3 < 0.
This only happens if:
u —(]. + k1(3 + k3)) < 0, thisis, 1+ k1(3 + k3) > 0.
u \/(1 + k1(3 + k3))2 — 16k k3 is real, this
iS,(]. —+ k1(3 + k3))2 — 16/(1/(3 > 0. o
m 16ki k3 > 0 (if not there would be a positive number inside the =
root) 57 / 59




Constant external torque.

. Gravity gradient. Stable orientation.
Non-zero torque spins

Stable orientation

m Plotting the conditions in a chart:

m From 16ki ks > 0, we obtain k; and ks
1 ks with the same sign.

Since I3 < I, one gets that
ki — k3 > 0.

if k1 > k3 > 0 we obtain “Lagrange’s
region " (right-upper triangle).

There is another region (known as
“De Bra-Delp") obtained from

(1 + k1(3 + k3))2 — 16ki1 k3 > 0.
However it is sensitive to energy
dissipation, which makes it unstable.

Fig. 6.9 Gravity-gradient stability plot. -
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Non-zero torque spins

Stable orientation

m In summary:

Fig. 6.9 Gravity-gradient stability plot. m®

Constant external torque.
Gravity gradient. Stable orientation.

The practical stable zone corresponds
to ki1 > k3 > 0, which in turn implies
that b > L and I, > 5. Before we
already obtained /3 < /1. Thus axis 2
(orthogonal to the orbital plane) must
be the major axis, axis 3 (pointing to
the planet) the minor axis of inertia,
and axis 1 (in the direction of orbital
velocity) the intermediate.

Careful: the angles at the equilibrium
are 0° but they can also be 180° (the
“opposite” attitude is also stable!).

How many stable equilibria? How o

many unstable equilibria?
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