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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Spacecraft attitude dynamics

Spacecraft attitude dynamics are given by the equations of
rotational dynamics. These describe the relation between
causes (torques exerted on the vehicle) and effects (angular
velocity). Solved together with kinematics.
Main hypothesis: The vehicle is a rigid body (rigid-body
hypothesis). If there are flexible/mobile parts, the model
needs to be extended to include them. Thus we can define the
rotation of the body frame (fixed at the center of mass of the
body) w.r.t. the inertial frame, as in previous lessons.
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Angular momentum and Torque I
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

For each point of the body with mass dm, one has ~̈Rdm = d ~F .
Taking moment with respect to the center of mass B, we get

~ρ× ~̈Rdm = ~ρ× d ~F = d ~MB , and integrating over the volume
V , we get a relation involving the total moment of the forces

with respect to B (the total torque):
∫
V ~ρ× ~̈Rdm = ~MB .

Notice that these time-derivatives are considered w.r.t. the
inertial frame.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Angular momentum and Torque II

“Chapter06” — 2008/6/6 — 14:34 — page 351 — #3!
!

!
!

!
!

!
!

RIGID-BODY DYNAMICS 351

Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

The absolute angular momentum with respect to B, ~ΓB , is

defined as: ~ΓB =
∫
V ~ρ× ~̇Rdm.

Note ~̇ΓB =
∫
V ~̇ρ× ~̇Rdm +

∫
V ~ρ× ~̈Rdm.

Since ~R = ~RC + ~ρ, replacing it in the first term we get:
~̇ΓB =

∫
V ~̇ρ× ~̇ρdm +

∫
V ~̇ρ× ~̇Rcdm + ~MB

The first term is zero. The second verifies∫
V ~̇ρ× ~̇Rcdm =

(
d
dt

∫
V ~ρdm

)
× ~̇Rc = ~0.

Therefore ~̇ΓB = ~MB 4 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Angular momentum and Inertia I
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

The angular momentum ~ΓB verifies
~ΓB =

∫
V ~ρ× ~̇Rdm =

∫
V ~ρ× ~̇Rcdm+

∫
V ~ρ× ~̇ρdm =

∫
V ~ρ× ~̇ρdm.

Remember Coriolis’ equation
(
d
dt ~ρ
)
N

=
(
d
dt ~ρ
)
B

+ ~ωB/N × ~ρ,
where N is an inertial frame and B the body axes. Then,(
d
dt ~ρ
)
N

= ~ωB/N × ~ρ.
Therefore:
~ΓB =

∫
V ~ρ× (~ωB/N × ~ρ)dm =

(
−
∫
V ~ρ
×~ρ×dm

)
~ωB/N

Define the inertia tensor
I = −

∫
V ~ρ
×~ρ×dm =

∫
V

[
(ρT ~ρ)Id− ρ~ρT

]
dm 5 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Angular momentum and Inertia II

“Chapter06” — 2008/6/6 — 14:34 — page 351 — #3!
!

!
!

!
!

!
!

RIGID-BODY DYNAMICS 351

Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

Thus ~ΓB = I · ~ωB/N . The explicit expression of the inertia

tensor is I =

[ ∫
V (ρ2

2 + ρ2
3)dm −

∫
V ρ1ρ2dm −

∫
V ρ1ρ3dm

−
∫
V ρ1ρ2dm

∫
V (ρ2

1 + ρ2
3)dm −

∫
V ρ2ρ3dm

−
∫
V ρ1ρ3dm −

∫
V ρ2ρ3dm

∫
V (ρ2

1 + ρ2
2)dm

]
Since the matrix is symmetric: it is diagonalizable. Thus one
can find the principal axes where I is diagonal:

I =

 I1 0 0
0 I2 0
0 0 I3


The largest moment of inertia Ii is about an axis which is
denoted as major axis; the smallest, about the minor axis.
The remaining one is about the intermediate axis.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Angular momentum and Inertia III

Assume we have a vehicle composed of n parts, each of them
with known mass Mk , center of mass ~rck and inertia tensor
Ik . Then one can find the inertial tensor of the spacecraft as

I =
n∑

k=1

[
Mk

(
‖~rck‖2Id− ~rck~rTck

)
+ Ik

]
Note that ~rck is the vector joining the center of mass of the k
part with the whole spacecraft center of mass.

Spacecraft are formed by a number of structural elements so
this is a widely used formula. However, we will not need it in
general for our lessons.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Kinetic energy
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

Kinetic energy is defined as T = 1
2

∫
V ~̇ρ · ~̇ρdm.

Using
(
d
dt ~ρ
)
N

= ~ωB/N × ~ρ, we get

T = 1
2

∫
V ~̇ρ · (~ωB/N × ~ρ)dm = 1

2~ωB/N ·
∫
V (~ρ× ~̇ρ)dm =

1
2~ωB/N · ~ΓB = 1

2~ωB/N · I · ~ωB/N .

In principal axes, if ~ωB/N = [ω1 ω2 ω3]T , one gets:

~ΓB =

 ω1I1
ω2I2
ω3I3


Thus:T =

ω2
1I1 + ω2

2I2 + ω2
3I3

2 8 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Euler’s Equations

Start from ~̇Γ = ~M. Since the time-derivative is in the inertial
frame, taking it in body axes we get:(

d
dt
~Γ
)
N

=
(

d
dt
~Γ
)
B

+ ~ωB/N × ~Γ = ~M.

Replacing the expression of angular momentum in terms of
the inertia tensor:

(
d
dtI · ~ωB/N

)
B

+ ~ωB/N ×
(
I · ~ωB/N

)
= ~M

Using the rigid-body hypothesis
(
d
dtI
)
B

= 0, we get:

I · ~̇ωB/N + ~ω×B/NI · ~ωB/N = ~M.

Developing in principal axes and writing ~M = [M1 M2 M3]T

I1ω̇1 + (I3 − I2)ω2ω3 = M1

I2ω̇2 + (I1 − I3)ω1ω3 = M2

I3ω̇3 + (I2 − I1)ω2ω1 = M3

9 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-Free rotation

Our first detailed study is of torque-free rotation, this is, when
torque is zero: ~M = ~0. Under this assumption, the angular
momentum of the system is preserved.

This does not ever happen in reality since there are always
some small perturbing torques (albeit they can be small).

We will see some analytical solutions but the most interesting
results are those concerning the stability of the rotation; in
particular, we will find the major axis rule.

We consider two cases: axisymmetric (two equal moments of
inertia: the spinning top) and asymmetric (the three moments
of inertia are different)

The totally symmetric case (I1 = I2 = I3) decouples Euler’s
equations and can be trivially solved (the resulting angular
velocities are constant and independent from each other).

10 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.
Consider I1 = I2 = I , I3 6= I .
Euler’s equations now read:

I ω̇1 + (I3 − I )ω2ω3 = 0

I ω̇2 + (I − I3)ω1ω3 = 0

I3ω̇3 = 0

First, we obtain ω3 = Cst = n (spin rate of the spacecraft
about it symmetry axes). Define λ = I−I3

I n, denoted as the
“relative spin rate”. The first two equations result in

ω̇1 − λω2 = 0

ω̇2 + λω1 = 0

This is the ODE of a harmonic oscillator, whose solution is:

ω1 = ω1(0) cosλt + ω2(0) sinλt

ω2 = ω2(0) cosλt − ω1(0) sinλt
11 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

It is easy to see that ω2
1 + ω2

2 = Cst = ω2
12, the so-called

transverse angular velocity. Thus, ‖ω‖ =
√
ω2

12 + n2 = Cst

and its third component is also constant. Therfore, ~ω seen in
the body frame describes a cone about the body symmetry
axes, of angle γ = arctan

(
ω12
n

)
.

On the other hand ~Γ = ~Cst in the inertial frame by
conservation of angular momentum. We choose the z axis of
the inertial frame as pointing in the direction of ~Γ ( ~H in the
figure). In addition Γ = ‖~Γ‖ must be constant as well.

In body axes, ~Γ = [Iω1 Iω2 I3n]T , so that
~Γ · ~ebz = I3n = cos θΓ, this is, the angle between ~Γ and the
body z axis is constant; this angle, θ, is the nutation angle. In
addition:

tan θ =

√
1− cos2 θ

cos θ
=

√
Γ2 − I 2

3 n
2

I3n
=

Iω12

I3n
=

I

I3
tan γ

Exercise: prove that the angle between ~Γ y ~ω is θ − γ = cst. 12 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

Thus the situation is as in the figure (where ~H = ~Γ).
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6.5 Torque-Free Motion of an Axisymmetric Rigid Body

Most spin-stabilized spacecraft are nearly axisymmetric, and they rotate about
one of their principal axes. The stability of torque-free rotational motion of
such spin-stabilized spacecraft is of practical importance. The term “torque-
free motion” commonly employed in spacecraft attitude dynamics refers to the
rotational motion of a rigid body in the presence of no external torques.

Consider a torque-free, axisymmetric rigid body with a body-fixed reference
frame B, which has basis vectors {!b1, !b2, !b3}, and which has its origin at the center
of mass, as illustrated in Fig. 6.4. The reference frame B coincides with a set of
principal axes, and the !b3 axis is the axis of symmetry; thus, J1 = J2.

Euler’s rotational equations of motion of a torque-free, axisymmetric spacecraft
with J1 = J2 = J become

Jω̇1 − (J − J3)ω3ω2 = 0 (6.49)

Jω̇2 + (J − J3)ω3ω1 = 0 (6.50)

J3ω̇3 = 0 (6.51)

where ωi ≡ !bi · !ω are the body-fixed components of the angular velocity of the
spacecraft.

From Eq. (6.51), we have

ω3 = const = n (6.52)

where the constant n is called the spin rate of the spacecraft about its symmetry
axis !b3.

Defining the relative spin rate λ as

λ = (J − J3)n
J

Fig. 6.4 Torque-free motion of an axisymmetric rigid body.This justifies introducing Euler angles to describe the
movement, in the sequence (3,1,3), where one already knows
that θ = Cst.

n
φ−→
zn

S
θ−→
xS

S ′
ψ−→
zS′

BFS
13 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

For the sequence

n
φ−→
zn

S
θ−→
xS

S ′
ψ−→
zS′

BFS

the kinematics are, replacing θ = Cst:

ω1 = φ̇ sin θ sinψ + θ̇ cosψ = φ̇ sin θ sinψ

ω2 = φ̇ sin θ cosψ − θ̇ sinψ = φ̇ sin θ cosψ

ω3 = ψ̇ + φ̇ cos θ

Applying ω2
1 + ω2

2 = ω2
12 we obtain: ω12 = φ̇ sin θ. Thus

φ̇ = ω12
sin θ = Cst, the precession rate. Finally

ψ̇ = n − φ̇ cos θ = n − ω12
tan θ = n − I3n

I = n I−I3
I = λ = Cst.

Similarly φ̇ = ω12
sin θ = I3n

I cos θ = I3(ψ̇+φ̇ cos θ)
I cos θ , from where

φ̇ = I3ψ̇
(I−I3) cos θ .

14 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Geometrical interpretation.
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6.5 Torque-Free Motion of an Axisymmetric Rigid Body

Most spin-stabilized spacecraft are nearly axisymmetric, and they rotate about
one of their principal axes. The stability of torque-free rotational motion of
such spin-stabilized spacecraft is of practical importance. The term “torque-
free motion” commonly employed in spacecraft attitude dynamics refers to the
rotational motion of a rigid body in the presence of no external torques.

Consider a torque-free, axisymmetric rigid body with a body-fixed reference
frame B, which has basis vectors {!b1, !b2, !b3}, and which has its origin at the center
of mass, as illustrated in Fig. 6.4. The reference frame B coincides with a set of
principal axes, and the !b3 axis is the axis of symmetry; thus, J1 = J2.

Euler’s rotational equations of motion of a torque-free, axisymmetric spacecraft
with J1 = J2 = J become

Jω̇1 − (J − J3)ω3ω2 = 0 (6.49)

Jω̇2 + (J − J3)ω3ω1 = 0 (6.50)

J3ω̇3 = 0 (6.51)

where ωi ≡ !bi · !ω are the body-fixed components of the angular velocity of the
spacecraft.

From Eq. (6.51), we have

ω3 = const = n (6.52)

where the constant n is called the spin rate of the spacecraft about its symmetry
axis !b3.

Defining the relative spin rate λ as

λ = (J − J3)n
J

Fig. 6.4 Torque-free motion of an axisymmetric rigid body.n
φ−→
zn

S
θ−→
xS

S ′
ψ−→
zS′

BFS

Considering the sequence and taking into account the fact
that the nutation angle is constant and the other two angles
change uniformly, one can imagine the movement as the
rolling of one cone over another without slipping (with
constant angular speeds φ̇ and ψ̇); the point of contact is
where the angular velocity ~ω lies. 15 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Geometrical interpretation.
580  CHAPTER 10 Satellite attitude dynamics

illustrated in  Figure 10.4 , which also shows the   body cone   and   space cone  . The space cone is swept out in 
inertial space by the angular velocity vector as it rotates with angular velocity   ω  p   around  H   G  , whereas the 
body cone is the trace of   ω   in the body frame as it rotates with angular velocity   ω  s   about the  z  axis. From 
inertial space, the motion may be visualized as the body cone rolling on the space cone, with the line of 
contact being the angular velocity vector. From the body frame it appears as though the space cone rolls on 
the body cone.  Figure 10.4    graphically confi rms our deduction from Equation 10.23, namely, that preces-
sion and spin are in the same direction for prolate bodies and opposite in direction for oblate shapes. 

 Finally  , we know from Equations 10.24 and 10.25 that the magnitude  HG     of the angular momentum is 

  
HG xy oA C! "2 2 2 2ω ω

      

 Using   Equations 10.17 and 10.22, we can write this as 

  
HG p p pA C

A
C

A! " ! "2 2 2
2

2 2 2 2( ) ( )ω θ ω θ ω θ θsin cos sin cos








     

  so that we obtain a surprisingly simple formula for the magnitude of the angular momentum in torque-free 
motion,   

  
HG pA! ω   (10.27)     

        Example 10.1      
 A   cylindrical shell is rotating in torque-free motion about its longitudinal axis. If the axis is wobbling 
slightly, determine the ratios of  l / r  for which the precession will be prograde or retrograde.                     

z

HG

p

HG

s

Space cone
Body cone

Body cone

Space cone

z

s

(a) Prograde precession (b) Retrograde precession

A > C A < C

s

p

θ
θ

γ

γ

ω

sωω

ω
ω

ωω

ω

 FIGURE 10.4  
       Space and body cones for a rotationally symmetric body in torque-free motion. (a) Prolate body. (b) Oblate body.    

Remember tan γ = tan θ I3I y φ̇ = I3ψ̇
(I−I3) cos θ . Two cases arise:

Prolate body (thin symmetry axis, I3 < I ): this is case (a).
Since γ < θ the cones roll one outside the other and since the
signs of φ̇ and ψ̇ are equal the rotation is in the same direction
(prograde precession).
Oblate body (thick symmetry axis, I3 > I ): this is case (b).
Since γ > θ the cones roll one inside the other and since the
signs of φ̇ y ψ̇ are opposite the rotation is in the opposite
direction (retrograde precession).
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Torque-free rotation of an asymmetrical body

In the asymmetrical case, there exists a major, minor and
intermediate axis. The equations cannot be solved in terms of
conventional functions.

I1ω̇1 + (I3 − I2)ω2ω3 = 0

I2ω̇2 + (I1 − I3)ω1ω3 = 0

I3ω̇3 + (I2 − I1)ω2ω1 = 0

Some authors solve these equations by using Jacobi’s
“elliptical functions”. However, it is not easy to
understand/interpret these functions, so we take a more
“geometric” path.
Notice that, due to conservation of angular momentum, ~Γ is
constant (in inertial axes). Therefore ‖~Γ‖ = Γ is constant no
matter what axes are used to write ~Γ. In particular, in the
body frame, ~Γ = [I1ω1 I2ω2 I3ω3]T , therefore
Γ2 = I 2

1ω
2
1 + I 2

2ω
2
2 + I 2

3ω
2
3 = Cst. 17 / 59
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Torque-free rotation of an asymmetrical body

Similarly, in torque-free rotations the kinetic energy T is also
preserved. Which impliese 2T = I1ω

2
1 + I2ω

2
2 + I3ω

2
3 = Cst′

Therefore the components of the angular velocity, ω1(t),
ω2(t), ω3(t), no matter their values, must satisfy

ω2
1

Γ2

I 2
1

+
ω2

2
Γ2

I 2
2

+
ω2

3
Γ2

I 2
3

= 1

ω2
1

2T
I1

+
ω2

2
2T
I2

+
ω2

3
2T
I3

= 1

These are the equations of two ellipsoids: the angular
momentum ellipsoid and the kinetic energy ellipsoid. Thus the
angular velocity vector must always lie in the intersection of
these two ellipsoids; these intersections are known as “polhode
curves”.
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Polhode curves

In general the curves, for given ellipsoids, are two disjoint,
closed curves.

130 EULERIAN MECHANICS CHAPTER 4

where
√

2IiT are the corresponding semi-axes. In order for the torque-free
rotation to satisfy both Eqs. (4.60) and (4.61), the energy ellipsoid and the mo-
mentum sphere must intersect. The intersection forms a trajectory of feasible
ω(t) as illustrated in Figure 4.5. This geometrical interpretations is very use-
ful to make qualitative studies on the nature and limiting properties of large
rotations.

Momentum Sphere

Energy Ellipsoid

Trajectory of 
possible ( )! t

H1

H2

H3

Figure 4.5: General Intersection of the Momentum Sphere and the En-
ergy Ellipsoid

Clearly, for a given |H |, only a certain range of kinetic energy is possible.
For the current discussion, let us hold the angular momentum vector magnitude
constant and sweep the kinetic energy through its two extrema. Also, assume
that the inertia matrix entries Ii are ordered such that

I1 ≥ I2 ≥ I3 (4.62)

With this ordering of inertias, the largest kinetic energy ellipsoid semi-axis√
2I1T occurs about the b̂1 axis as shown in Figure 4.5, and the smallest semi-

axis is about the b̂3 axis. Eq. (4.61) shows that varying T will only uniformly
scale the corresponding kinetic energy ellipsoid. The overall shape and aspect
ratio of the ellipsoid will remain the same for each choice in T .

Three special energy cases are shown in Figure 4.6. Since the kinetic energy
ellipsoid and the momentum sphere must intersect, the smallest possible T would
be scaled the energy ellipsoid such that its largest semi-axis is equal to H =
|H |. The momentum sphere perfectly envelops the energy ellipsoid as shown in
Figure 4.6(i). The only points of intersection are at

BH = ±H b̂1 (4.63)

In two cases the intersection reduces to two points: when the
ellipsoids are tangent. These cases correspond to maxima or
minima of the energy. In addition, there is a saddle point
when the intermediate axes coincide, and the resulting curve
is called the separatrix. 19 / 59
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Polhode curves: special cases
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H1

H3

H2

Minimum
Energy
Ellipsoid

(i) Minimum Energy Case

H1

H3

H2

Sepratrix

(ii) Intermediate Energy Case

H1

H3

H2

Maximum
Energy
Ellipsoid

(iii) Maximum Energy Case

Figure 4.6: Special Cases of Kinetic Energy Ellipsoid and Momentum
Sphere Intersections
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Torque-free rotation of an asymmetrical body

Assume that I3 < I2 < I1 (if not re-index the axes). Define

I ∗ = Γ2

2T . Subtracting the ellipsoid equations and multiplying
by Γ2, one gets:

I1ω
2
1 (I1 − I ∗) + I2ω

2
2 (I2 − I ∗) + I3ω

2
3 (I3 − I ∗) = 0

Note that if I ∗ < I3 all terms are positive (for non-zero
angular speed) so they cannot add to zero. Similarly if I ∗ > I1
all terms are negative. Thus, I ∗ ∈ [I3, I1]. For fixed Γ, this
implies that kinetic energy has to lie inside an interval. The
extrema are I ∗ = I1 (minimal energy, implies ω2 = ω3 = 0 and
thus a rotation about the 1 axis, the major one) and I ∗ = I3
(maximal energy, implies ω1 = ω2 = 0 and thus a rotation
about the 3rd axis, the minor oner)
The case I ∗ = I2 has additional solutions besides pure
rotations about the 2 axis (ω1 = ω3 = 0); these are called
separatrices.
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Polhode curves for fixed Γ

If Γ (H in the figure) is fixed and we vary the energy, we
obtain all possible polhode curves over the surface of the
momentum ellipsoid, including the separatrices.
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Minimum
Energy

Maximum
Energy

Sepratrix

H3

H 2

H1

T =
H2

2I1

T <
H2

2 I2

T =
H 2

2I2

T >
H2

2 I2

T =
H 2

2I3

Figure 4.7: A Family of Energy Ellipsoid and Momentum Sphere Inter-
sections

drag. Let’s study what happens if a satellite is spun up about the axis of least
inertia b̂3. For a given angular momentum, this corresponds to the maximum
kinetic energy case. Since any real rigid body will loose energy over time simply
due to internal damping, this satellite’s energy is expected to decrease over time.
Figure 4.7 shows how the satellite will start to “wobble” about the b̂3 axis as
the energy ellipsoid is reduced. After some time the ω(t) curves will cross the
sepratrix and the satellite will start to “wobble” about the axis of maximum
inertia b̂1. Ultimately, as the energy approaches the minimum energy ellipsoid,
the satellite will be spinning purely about the b̂1 axis. Therefore, under the
presence of a negative energy rate, only the spin about the axis of maximum
inertia is a stable spin. The pure spin case about b̂3 will become unstable over
time.

This behavior is demonstrated in nature in that all planets are essentially
spinning about their axis of maximum inertia. This fact was rediscovered during
early space explorations when Explorer 1 was launched into orbit spinning about
its axis of least inertia. It took less than a fraction of an orbit before it started
to tumble.

4.2.2 General Free Rigid Body Motion

In this section we would like to derive the general rotational equations of motion
for a rigid body free of any external torques. The attitude coordinates are chosen
to be the (3-2-1) Euler angles, also known as the yaw, pitch and roll angles
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Stability of spinning spacecraft about a principal axis

The simplest solutions of torque-free motion are pure
rotations (spins) about a principal axis. Next, we start from
the solution of equilibrium ω̄3 = n = Cst and ω̄1 = ω̄2 = 0.
We study the stability of this equilibrium as a function of
whether the 3rd axis is major, minor or intermediate.
Let us perturb the equilibrium, defining ω1 = δω1, ω2 = δω2

and ω3 = n + δω3. Substituting in Euler’s equations:

I1δω̇1 + (I3 − I2)δω2(n + δω3) = 0

I2δω̇2 + (I1 − I3)δω1(n + δω3) = 0

I3δω̇3 + (I2 − I1)δω2δω1 = 0

Neglecting second-order terms:

I1δω̇1 + n(I3 − I2)δω2 = 0

I2δω̇2 + n(I1 − I3)δω1 = 0

I3δω̇3 = 0
23 / 59
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Stability of spinning spacecraft about a principal axis

The equation of δω3 defines a marginally stable equilibrium:
the perturbed solutions don’t grow, but they don’t dissipate
either.
The equations for δω1 and δω2 can be combined as

δω̈1 +
n2(I3 − I2)(I3 − I1)

I1I2
δω1 = 0

The stability of the solution to this equation depends on the
sign of (I3 − I2)(I3 − I1). For a positive sign, solutions are
oscillatory (again, they don’t grow or dissipate: marginally
stable). If the sign is negative, the solutions are exponential
and one of the solutions grows in time (unstable)

If 3 is the major axis: (I3 − I2)(I3 − I1) = +×+ > 0: stable.

If 3 is the minor axis:(I3 − I2)(I3 − I1) = −×− > 0: stable.

If 3 is the intermediate axis:, (I3 − I2)(I3 − I1) = +×− < 0:
unstable.
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Stability of spinning spacecraft with energy dissipation

While the previous calculation is correct under a rigid-body
assumption (Euler’s Equations), real-life solids are not
perfectly rigid.
There is always some deviation from the rigid body that can
cause some energy dissipation (flexibility effects, friction
between mobile parts, fuel sloshing). This modifies the
previous calculation as the system tends to go to an energy
minima.
Assume again I1 > I2 > I3. One idea (energy sink model) is
to, starting from physical principles (conservation of angular
momentum), find a minima of energy given the angular
momentum. This is, solve the mathematical minimization
problem

min I1ω
2
1 + I2ω

2
2 + I3ω

2
3

subject to I 2
1ω

2
1 + I 2

2ω
2
2 + I 2

3ω
2
3 = Γ2

25 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Stability of spinning spacecraft with energy dissipation

Using Lagrange multipliers:

L(ω1, ω2, ω3, λ) = I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + λ(I 2

1ω
2
1 + I 2

2ω
2
2 + I 2

3ω
2
3 − Γ2)

One has 0 = ∂L
∂ωi

= 2Iiωi (1 + λIi ), i = 1, 2, 3
Therefore there are three solutions:

ω2=ω3=0, λ = − 1
I1

, ω1 = Γ
I1

. T = Γ2

2I1
.

ω1=ω3=0, λ = − 1
I2

, ω2 = Γ
I2

. T = Γ2

2I2
.

ω1=ω2=0, λ = − 1
I3

, ω3 = Γ
I3

. T = Γ2

2I3
.

Comparing the values of the objective function (the energy),
clearly the minimum is given by the first solution (the second
is a saddle point and third one is the maximum). Thus the
only spin which is mathematically stable and at the same time
a minimum for the energy are rotations about the major axis.
Based on this argument, we can now state the major axis rule:
“For spacecraft with dissipation of energy, the only stable
spins are those about the major axis”.
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Stability of spinning spacecraft with energy dissipation

The geometrical effect of the major axis rule is that polhodes
become a single closed spiral curve that goes from the
maximum of energy to the minimum of energy:
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Reorientation Maneuver for Spinning Spacecraft

Christopher D. Rahn*
University of California, Berkeley, Berkeley, California 94720

and
Peter M. Barbaf

Ford Aerospace Corporation, Palo Alto, California 94303

A spacecraft spinning about its minor axis in the presence of energy dissipation is directionally unstable.
Eventually, the spacecraft will reorient to a major axis spin. After the maneuver, the major axis spin rate can
be either positive or negative. Correspondingly, the orientation of the spacecraft relative to the inertially fixed
angular momentum vector is unpredictable. This paper demonstrates that the maneuver, when augmented with
two thruster firings based on gyro measurements, provides a desired final orientation.

Introduction

A SINGLE-body spacecraft spinning about its minor axis
in the presence of energy dissipation is directionally un-

stable.1 The spacecraft can be stabilized by active control, by
the jet damping of a rocket motor,2 or by dampers on a
controlled, despun platform,3 but removing these stabilizing
mechanisms causes the spacecraft to reorient and rotate about
its major axis due to the energy lost in fuel slosh and vibration.
This passive reorientation maneuver is called spin transition.

Spacecraft may rotate about their minor axis for several
reasons. First, launch vehicle fairing constraints often require
that the long and narrow axis of the spacecraft be aligned with

the longitudinal axis of the launch vehicle. Typically, the
launch vehicle spins longitudinally prior to separation, result-
ing in a minor axis spin for the spacecraft after separation.
Second, when a solid rocket motor raises the orbit, the rocket
motor and spacecraft combination spins about its minor axis

to increase stability during the firing. When the firing is com-
pleted, the combination undergoes spin transition unless ac-
tive control is used.

The spin transition maneuver is subject, however, to a limi-
tation. The orientation of the spacecraft relative to the iner-
tially fixed angular momentum vector at the end of the maneu-
ver cannot be determined a priori. The spacecraft can end up
with either a positive or a negative major axis spin. Physically,
this corresponds to two final attitudes that are 180 deg apart.
Many spacecraft have sensitive onboard instruments, which
must be shielded from the sun, or directional communication
equipment, which must point toward the Earth. In these cases,
it is desirable to ensure a final spin polarity.

There are techniques of optimally reorienting spacecraft
using thrusters4 and of acquiring attitude using momentum
wheels.5'6 In terms of fuel usage, the passive spin transition
maneuver is optimal, and momentum wheels, with their atten-
dant complexity, are not required. To make the maneuver
truly useful, however, the final spin polarity must be con-
trolled, requiring some fuel expenditure.

This paper presents a control system that guarantees a final
orientation after spin transition. The control system uses gyros
that determine when to fire thrusters, providing the desired
orientation.

Presented as Paper AAS 89-392 at the AAS/AIAA Astrodynamics
Specialist Conference, Stowe, VT, Aug. 7-10,1989; received Sept. 18,
1989; revision received Aug. 24, 1990; accepted for publication Sept.
10,1990. Copyright © 1990 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved.

*Graduate Student.
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Dynamics
Two models of the spacecraft dynamics are used. The anal-

ysis model consists of a rigid body with an energy sink. For
simulation purposes, the spacecraft is modeled as a rigid body
with a spherical, dissipative fuel slug. The rigid body has three
rates o?i, co2, and o>3 about the major, intermediate, and minor
body axes, respectively. The fuel is modeled as a spherical slug
of inertia 7, which is surrounded by a viscous layer. Designat-
ing the relative rates between the spacecraft body and the fuel
slug as <TI, cr2, and a3, the equations of motion are written as

= (72 - /3)co2o>3

(72 -

(73 -

a\ = — o>i —

<72 = - ci2 -

cr3 = - oj3 -

Aa2 + T2

A<73 + T3

-I-

(la)

(Ib)

(Ic)

(Id)

(le)

(If)

where A is the viscous damping coefficient of the slug; /i, 72,
and 73 are principal moments of inertia of the spacecraft

0)2

Finish

(01

Separatrices

Fig. 1 Polhode for a typical spin transition. The path of the angular
velocity vector in body axis coordinates starts with a positive minor
axis spin and finishes with a negative major axis spin.
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Example: fuel sloshing

Consider a satellite with a spherical tank filled with viscous
fuel, so that the fuel (with inertia J and friction coefficient ∆)
can be modelled as a “solid bubble” with its own angular
speed ~σ = [σ1 σ2 σ3]T relative to the satellite.
ExtraCstd from C.D. Rahn, P.M. Barba, “Reorientation
Maneuver for Spinning Spacecraft”, AIAA Journal of
Guidance, Dynamics and Control, Vol. 14, 1991.

(I1 − J)ω̇1 + (I3 − I2)ω2ω3 = ∆σ1

(I2 − J)ω̇2 + (I1 − I3)ω1ω3 = ∆σ2

(I3 − J)ω̇3 + (I2 − I1)ω2ω1 = ∆σ3

σ̇1 + ω̇1 + ω2σ3 − ω3σ2 = −
∆σ1

J

σ̇2 + ω̇2 + ω3σ1 − ω1σ3 = −
∆σ2

J

σ̇3 + ω̇3 + ω1σ2 − ω2σ1 = −
∆σ3

J

By dissipation, any starting spin ends up a major axis spin;
however, it is not possible to know a priori the orientation of
the rotation, since the equations display strange (chaotics)
dynamics. 28 / 59
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Example: fuel sloshing

The fact that the equations have chaotic dynamics means
that the sense of rotation totally depends on the initial
condition, to the point that any change on the initial
condition, no matter how small, can produce a variation in the
sense of rotation.

Thus, to all practical effect, it is not
possible to predict the final sense of
the rotation.

A plot in which one marks with the
same color the initial conditions
producing the same sense of rotation
becomes enormously complex, due to
this chaotic property of the equation.
These kind of plots are known as
fractals.

29 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Major axis rule. Additional comments.

The instability of minor axis spinners is, from the point of view
of time-scales, much slower than the instability of intermediate
axis spinners, depending on the rate of energy dissipation.

If one desires a major axis spin one can amplify energy
dissipation by adding dampers, such as nutation dampers
(pendula with added friction).

However, if for some reason one needs a minor axis spin this is
no issue if it is only required for a short period of time and
dissipation is not too large. Later the body will return to a
major axis spin naturally.

Important: the presence of mobile part such as inertia wheels
may change these theoretical results.
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Rotational dynamics with a wheel

Let us start with how Euler’s equations are modified by the
presence of k wheels.

For each wheel i , assumed axisymmetric, define IRi as its
momentum of inertia in the rotation direction ~ei and its
relative (to the spacecraft) angular speed as ωRi .

Since a wheel is symmetric, it does not change the distribution
of mass: total spacecraft inertia does not change at all.

The angular moment of the spacecraft + wheels is:
~Γ = I~ωB/N +

∑k
i=0 ~ei IRiωRi

Expressing the derivative ~̇Γ = ~M in the body frame one can
obtain the differential equations of motion.
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Three wheels in principal axes

If there is a wheel about each principal axis, the spacecraft

angular momentum is ~Γ = I~ωB/N +

 ωR1IR1

ωR2IR2

ωR3IR3


Thus the dynamics is given by

I1ω̇1 + (I3 − I2)ω2ω3 + IR1ω̇R1 + IR3ωR3ω2 − IR2ωR2ω3 = M1

I2ω̇2 + (I1 − I3)ω1ω3 + IR2ω̇R2 + IR1ωR1ω3 − IR3ωR3ω1 = M2

I3ω̇3 + (I2 − I1)ω2ω1 + IR3ω̇R3 + IR2ωR2ω1 − IR1ωR1ω2 = M3

One needs to add the equations describen the wheels’ spin.
For instance, if for each axis an electric motor with (internal)
torque JRi drives the wheels, these equations would be

IR1(ω̇1 + ω̇R1) = J1

IR2(ω̇2 + ω̇R2) = J3

IR3(ω̇3 + ω̇R3) = J3
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One wheel about the 3rd axis

Assume that a spacecraft has an inertial wheel about the 3rd
axis, with inertia IR , and spinning at a velocity ωR relative to
the spacecraft. It could even be a part of the spacecraft (see
dual spin-stabilization in lesson 7).

Angular momentum is Γ = [I1ω1 I2ω2 I3ω3 + IRωR ]T .

Rotational dynamics become

I1ω̇1 + (I3 − I2)ω2ω3 + IRωRω2 = 0

I2ω̇2 + (I1 − I3)ω1ω3 − IRωRω1 = 0

I3ω̇3 + IR ω̇R + (I2 − I1)ω2ω1 = 0

One needs to add IR(ω̇3 + ω̇R) = J, where J is the torque
driving the wheel (if any).
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Spin stability with a wheel.

One can use the motor to produce a torque that mantains ωR

constant. Then:

I1ω̇1 + (I3 − I2)ω2ω3 + IRωRω2 = 0

I2ω̇2 + (I1 − I3)ω1ω3 − IRωRω1 = 0

I3ω̇3 + (I2 − I1)ω2ω1 = 0

New terms appear that modify the previous stability analysis.
Even the intermediate axis can be made stable! Repeating the
steps for mathematical stability:

δω̈1 +
(n(I3 − I2) + IRωR) (n(I3 − I1) + IRωR)

I1I2
δω1 = 0

Now if 1 is the minor axis and 2 the major, the condition for
stability is n(I3 − I2) + IRωR > 0, this is, ωR >

I2−I3
IR

n.

Next, we repeat the analysis in the case of energy dissipation
by using the energy sink method.
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Spin stability with a wheel and energy dissipation.

Let us minimize the energy fixing the angular momentum
(since it is a torque-free motion).

Then

2T = I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + IRω

2
R ,

Γ2 = I 2
1ω

2
1 + I 2

2ω
2
2 + (I3ω3 + IRωR)2

The last term of the energy can be ignored since it is a
constant and does not influence the minimization process.
The problem is posed as

min I1ω
2
1 + I2ω

2
2 + I3ω

2
3

subject to I 2
1ω

2
1 + I 2

2ω
2
2 + (I3ω3 + IRωR)2 = Γ2
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Spin stability with a wheel and energy dissipation.
Using Lagrange multipliers

L(ω1, ω2, ω3, λ) = I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + λ(I 2

1ω
2
1 + I 2

2ω
2
2 + (I3ω3 + IRωR )2 − Γ2)

One gets 0 = ∂L
∂ωi

= 2Iiωi (1 + λIi ), i = 1, 2 y

0 = ∂L
∂ω3

= 2I3(ω3 + λ(I3ω3 + IRωR))

Several solutions exist, we take

ω1 = ω2 = 0, ω3 = n, λ = − n

I3n + IRωR
.

To identify if it is a minimum or not, we use the following
theorem: Let L(x , y , z) = F (x , y , z) + λG (x , y , z) be the
Lagrangian of the system so that F is the function to
minimize and G (x , y , z) = 0 the constraint. Then, construct
the matrices:

H3 =


0 ∂G

∂x
∂G
∂y

∂G
∂x

∂2L
∂x2

∂2L
∂x∂y

∂G
∂y

∂2L
∂x∂y

∂2L
∂y2

 , H4 =


0 ∂G

∂x
∂G
∂y

∂G
∂z

∂G
∂x

∂2L
∂x2

∂2L
∂x∂y

∂2L
∂x∂z

∂G
∂y

∂2L
∂x∂y

∂2L
∂y2

∂2L
∂y∂z

∂G
∂z

∂2L
∂x∂z

∂2L
∂y∂z

∂2L
∂z2

 ,
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Torque-Free rotation
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Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation.

If x∗, λ∗ is the critical point under analysis (i.e., the point
that makes the first derivatives of L zero), to determine if
there is a minimum or not, it follows that if:

1 ∂G
∂x (x∗, y∗, z∗) 6= 0

2 Det(H3(x∗, y∗, z∗, λ∗)) < 0
3 Det(H4(x∗, y∗, z∗, λ∗)) < 0

then there is a minimum at the critical point (sufficient
condition, not necessary!).

In our particular case, to verify the theorem, define x = ω3,
y = ω1, z = ω2. Then:

H3 =

 0 2I3(I3n + IrωR ) 0
2I3(I3n + IrωR ) 2I3(1 + λI3) 0

0 0 2I1(1 + λI1)

 ,

H4 =


0 2I3(I3n + IrωR ) 0 0

2I3(I3n + IrωR ) 2I3(1 + λI3) 0 0
0 0 2I1(1 + λI1) 0
0 0 0 2I2(1 + λI2)

 .
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Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation.

The (sufficient) conditions for a minimum are:
1 ∂G

∂x (x∗, y∗, z∗) = 2I3(I3n + IrωR) 6= 0 (since if the other two
angular speeds are zero, one has I3n + IrωR = ±Γ 6= 0).

2 Det(H3(x∗, y∗, z∗, λ∗)) = −8I 2
3 (I3n + IrωR)2I1(1 + λI1) < 0

3 Det(H4(x∗, y∗, z∗, λ∗)) = Det(H3)2I2(1 + λI2) < 0

Two conditions are then reached

1 + λI1 > 0,

1 + λI2 > 0.

Using the value of λ that we derived before:

1− I1n

I3n + IRωR
> 0,

1− I2n

I3n + IRωR
> 0.

One has to be careful with the sign of I3n + IRωR since when
solving for ωR the sign of the inequality can change.
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Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation.

Instead of solving for ωR we can simplify the fraction,
reaching:

(I3 − I1)n + IRωR

I3n + IRωR
> 0,

(I3 − I2)n + IRωR

I3n + IRωR
> 0,

Two cases:

1 If I3n + IRωR > 0, this is, ωR > − I3n
IR

, the conditions reduce to

ωR >
(I1−I3)n

IR
, ωR >

(I2−I3)n
IR

.

2 If I3n + IRωR < 0, this is, ωR < − I3n
IR

, the conditions reduce

toωR <
(I1−I3)n

IR
, ωR <

(I2−I3)n
IR

.

Notice that these conditions are similar (but more restrictive)
than the ones obtained without energy dissipation!
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Torque-Free rotation

Non-zero torque spins
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Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel: Example.
Consider a satellite with a wheel in the 3rd axis with:

I =

 10 0 0
0 30 0
0 0 20

 kg ·m2
, n = 60 r.p.m., IR = 2 kg ·m2

.

Need to study the required spinning speed for the weel for the
3rd axis (intermediate) to be stable.
With the rigid-body hypothesis (no dissipation):
(n(I2 − I3)− IRωR) (n(I3 − I1) + IRωR) < 0. Two cases

1 First parenthesis is negative, second positive. Conditions

become: ωR >
n(I2−I3)

IR
= 300 r.p.m. and

ωR >
n(I3−I1)

IR
= −300 r.p.m.. Since the first condition is more

stringent: ωR > 300 r.p.m..
2 Second parenthesis is negative, first positive. Conditions

become: ωR <
n(I2−I3)

IR
= 300 r.p.m. and

ωR <
n(I3−I1)

IR
= −300 r.p.m.. Now the second condition is

more restrictive, therefore ωR < −300 r.p.m..

Thus, the spin is stable if ωR > 300 r.p.m. or if
ωR < −300 r.p.m., but unstable if ωR ∈ [−300, 300] r.p.m. 40 / 59
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Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
Effect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation:
Example.

With energy dissipation, two cases show up again:

1 If I3n + IRωR > 0, this is ωR > − I3n
IR

= −600 r.p.m., then

ωR >
(I1−I3)n

IR
= −300 r.p.m., ωR >

(I2−I3)n
IR

= 300 r.p.m.. The
third condition is more restrictive so ωR > 300 r.p.m..

2 If I3n + IRωR < 0, this ωR < − I3n
IR

= −600 r.p.m., then

ωR <
(I1−I3)n

IR
= −300 r.p.m., ωR <

(I2−I3)n
IR

= 300 r.p.m.. The
first condition is the more stringent, thus ωR < −600 r.p.m..

Thus, the spin is stable if ωR > 300 r.p.m. or if
ωR < −600 r.p.m., but unstable if ωR ∈ [−600, 300] r.p.m..

Notice in ωR ∈ [−600,−300] r.p.m. the two models differ;
however, the model with dissipation is more realistic, so the
conclusion is that the rigid-body model is failing in that
interval of ωR !
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Non-zero torque spins

In practice there are always some perturbation torques. While
typically of small magnitude, they might be persistent (such
as gravity gradient which acts in the full orbit at all times).
They might be large as well, for instance in the case of
imperfectly aligned thrusters during manoeuvres.

We analyze two cases:

Perturbation torque acting on a spinning solid (gyroscopic
effect).
Gravity gradient stability.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

Hypothesis:

Axisymmetrical spacecraft: I1 = I2 = I .
Spinning spacecraft with speed n about axis 3, this is, ω3 = n.
Perturbation torque M1 constant about the axis 1. No torque
about the other axes.

Example: spin-stabilized spacecraft making a propulsive
manoeuvre with slight unalignment of the thruster axis with
the center of mass. If there is no spin, the resulting torque
causes an immediate rotation of the vehicle and failure of the
manoeuvre.

We will see that a spinner acquires the so-called “gyroscopic
rigidity” and the perturbing torque produces a slight
movement of precession and nutation of the spin axis.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

Euler’s equations reduce to

I ω̇1 + (I3 − I )ω2ω3 = M1

I ω̇2 + (I − I3)ω1ω3 = 0

I3ω̇3 = 0

We find immediately ω3 = Cst = n and define λ = I−I3
I n y

µ = M1
I . Two equations remain to be solved:

ω̇1 − λω2 = µ

ω̇2 + λω1 = 0

Taking time derivative in the first equation and substituting
the second:

ω̈1 + λ2ω1 = 0

Harmonic oscillator: ω1(t) = A sinλt + B cosλt.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

Substituting the solution in the 1st equation
ω2(t) = A cosλt − B sinλt − µ

λ .
Replacing initial conditions ω1(0) and ω2(0) we reach:
B = ω1(0), A = ω2(0) + µ

λ . Thus:

ω1 =

(
ω2(0) +

µ

λ

)
sinλt + ω1(0) cosλt =

µ

λ
sinλt

ω2 =

(
ω2(0) +

µ

λ

)
cosλt − ω1(0) sinλt −

µ

λ
=
µ

λ
(cosλt − 1)

where finally we have replaced ω1(0) = ω2(0) = 0.
Use now Euler angles

I
θ1−→
xn

S
θ2−→
yS

S ′
θ3−→
zS′

BFS

Developing the kinematic equations we stop at:

θ̇1 =
ω1 cos θ3 − ω2 sin θ3

cos θ2

θ̇2 = ω1 sin θ3 + ω2 cos θ3

θ̇3 = ω3 + (−ω1 cos θ3 + ω2 sin θ3) tan θ2
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.
Take zero initial conditions for the angles.
With the expectation that θ1 and θ2 should be rather small
whereas θ3 has to be large (it is the angle of the spin axis) we
replace cos θ2 ≈ 1 y tan θ2 ≈ θ2 (verify later!). Reaching:

θ̇1 = ω1 cos θ3 − ω2 sin θ3

θ̇2 = ω1 sin θ3 + ω2 cos θ3

θ̇3 = ω3 + θ2 (−ω1 cos θ3 + ω2 sin θ3) = ω3 − θ2θ̇1

Assume as well ω3 � θ2θ̇1, then we find θ3 = ω3t = nt.
The equations for θ1 y θ2 are:

θ̇1 = ω1 cos nt − ω2 sin nt

θ̇2 = ω1 sin nt + ω2 cos nt

Substituting the values of ω1 and ω2 previously found:

θ̇1 =
µ

λ
sinλt cos nt − µ

λ
(cosλt − 1) sin nt =

µ

λ
(sin (λ− n) t + sin nt)

θ̇2 =
µ

λ
sinλt sin nt +

µ

λ
(cosλt − 1) cos nt =

µ

λ
(cos (λ− n) t − cos nt)
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

By simple integration and using the initial condition we reach

θ1 =
µ

λ

(
1− cos (λ− n) t

λ− n
+

1− cos nt

n

)
θ2 =

µ

λ

(
sin (λ− n) t

λ− n
−

sin nt

n

)

Defining Ap = µ
λ(n−λ) y ωp = n − λ, amplitude and frequency

of precession, respectively, and An = µ
λn y ωn = n, amplitude

and frequency of nutation, respectively. The solution is then
written as:

θ1 = −Ap
(

1− cosωp t
)

+ An (1− cosωnt)

θ2 = Ap sinωp t − An sinωnt

Superposition of two circular movements: epicycloid.

Amplitudes are given by Ap = M1
(I−I3)n2

I
I3

y An = M1
(I−I3)n2 , and

the gyroscopic effect increases as n, I3/I , and the difference
I − I3 increases. The amplitudes should be small for the
assumptions to be true: large n.
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Torque-Free rotation
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Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.

The most important perturbation torque is gravity gradient,
as it is always present in orbit.

Simplification: consider an asymmetrical spacecraft in circular
orbit with radius R around an spherical planets; elliptical
orbits and/or deviations from speherical gravity (i.e. the J2

perturbation) introduce higher-order terms that we do not
analyze (they produce the so-called librations: oscillations
around the stable orientation).

Angular velocity is defined as usual in body axes with respect
to inertial, but the selected Euler angles are w.r.t. the orbit
frame, which is non-inertial. This subtlety has to be taken
into account in the analysis.

The situation is as in the figure of the next slide. N axes are
inertial, A axes are from the orbit frame (to be defined) and B
the body axes (principal axes of inertia).
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Gravity gradient.
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Fig. 6.8 Rigid body in a circular orbit.

The gravity-gradient torque about the spacecraft’s mass center is then
expressed as

!M =
∫

!ρ × d !f = −µ

∫ !ρ × !Rc

| !Rc + !ρ|3
dm (6.143)

and we have the following approximation:

| !Rc + !ρ|−3 = R−3
c

{

1 + 2( !Rc · !ρ)

R2
c

+ ρ2

R2
c

}− 3
2

= R−3
c

{

1 − 3( !Rc · !ρ)

R2
c

+ higher-order terms

}

(6.144)

where Rc = | !Rc| and ρ = | !ρ|. Because
∫

!ρ dm = 0, the gravity-gradient torque
neglecting the higher-order terms can be written as

!M = 3µ

R5
c

∫
(!Rc · !ρ) ( !ρ × !Rc) dm (6.145)

This equation is further manipulated as follows:

!M = −3µ

R5
c

!Rc ×
∫

!ρ( !ρ · !Rc) dm

= −3µ

R5
c

!Rc ×
∫

!ρ !ρ dm · !Rc

= −3µ

R5
c

!Rc ×
[ ∫

ρ2 Î dm − Ĵ
]

· !Rc

= −3µ

R5
c

!Rc ×
∫

ρ2 Î dm · !Rc + 3µ

R5
c

!Rc × Ĵ · !Rc

= 3µ

R5
c

!Rc × Ĵ · !Rc

Orbit frame: centered in the spacecraft. The direction z (~a3)
points towards Earth’s center (rotation:yaw). The direction x
(~a1) along the orbital velocity (rotation:roll). The direction y
(~a2) opposite to the orbital angular momentum ~h (orthogonal
to the orbital plane, rotation:pitch).
These axis spin with respect to the inertial frame N about the

−~a2 axis with angular speed n =
√

µ⊕
R3 .

Thus the relationship between frames is as follows

N
−nt−→
yn

A
θ3−→
zA

S
θ2−→
yS

S ′
θ1−→
xS′

B
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Fig. 6.8 Rigid body in a circular orbit.

The gravity-gradient torque about the spacecraft’s mass center is then
expressed as

!M =
∫

!ρ × d !f = −µ

∫ !ρ × !Rc

| !Rc + !ρ|3
dm (6.143)

and we have the following approximation:

| !Rc + !ρ|−3 = R−3
c

{

1 + 2( !Rc · !ρ)

R2
c

+ ρ2

R2
c

}− 3
2

= R−3
c

{

1 − 3( !Rc · !ρ)

R2
c

+ higher-order terms

}

(6.144)

where Rc = | !Rc| and ρ = | !ρ|. Because
∫

!ρ dm = 0, the gravity-gradient torque
neglecting the higher-order terms can be written as

!M = 3µ

R5
c

∫
(!Rc · !ρ) ( !ρ × !Rc) dm (6.145)

This equation is further manipulated as follows:

!M = −3µ

R5
c

!Rc ×
∫

!ρ( !ρ · !Rc) dm

= −3µ

R5
c

!Rc ×
∫

!ρ !ρ dm · !Rc

= −3µ

R5
c

!Rc ×
[ ∫

ρ2 Î dm − Ĵ
]

· !Rc

= −3µ

R5
c

!Rc ×
∫

ρ2 Î dm · !Rc + 3µ

R5
c

!Rc × Ĵ · !Rc

= 3µ

R5
c

!Rc × Ĵ · !Rc

The matrix CB
A and its differential kinematic equation is:

CB
A =

 cθ2cθ3 cθ2sθ3 −sθ2
−cθ1sθ3 + sθ1sθ2cθ3 cθ1cθ3 + sθ1sθ2sθ3 sθ1cθ2
sθ1sθ3 + cθ1sθ2cθ3 −sθ1cθ3 + cθ1sθ2sθ3 cθ1cθ2


 θ̇1

θ̇2

θ̇3

 =
1

cθ2

 cθ2 sθ2sθ1 sθ2cθ1
0 cθ1cθ2 −sθ1cθ2
0 sθ1 cθ1

 ~ωB
B/A
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The gravity-gradient torque about the spacecraft’s mass center is then
expressed as

!M =
∫

!ρ × d !f = −µ

∫ !ρ × !Rc

| !Rc + !ρ|3
dm (6.143)

and we have the following approximation:

| !Rc + !ρ|−3 = R−3
c

{

1 + 2( !Rc · !ρ)

R2
c

+ ρ2

R2
c

}− 3
2

= R−3
c

{

1 − 3( !Rc · !ρ)

R2
c

+ higher-order terms

}

(6.144)

where Rc = | !Rc| and ρ = | !ρ|. Because
∫

!ρ dm = 0, the gravity-gradient torque
neglecting the higher-order terms can be written as

!M = 3µ

R5
c

∫
(!Rc · !ρ) ( !ρ × !Rc) dm (6.145)

This equation is further manipulated as follows:

!M = −3µ

R5
c

!Rc ×
∫

!ρ( !ρ · !Rc) dm

= −3µ

R5
c

!Rc ×
∫

!ρ !ρ dm · !Rc

= −3µ

R5
c

!Rc ×
[ ∫

ρ2 Î dm − Ĵ
]

· !Rc

= −3µ

R5
c

!Rc ×
∫

ρ2 Î dm · !Rc + 3µ

R5
c

!Rc × Ĵ · !Rc

= 3µ

R5
c

!Rc × Ĵ · !Rc

First let us derive the gravity gradient torque. For each dm of
the spacecraft, there is an acting (gravity) force

d ~F = −µ~R
R3 dm = −µ(~Rc+~ρ)

|~Rc+~ρ|3
dm.

The moment of the forces is therefore:

~M =

∫
V
ρ× d ~F = −µ

∫
V
ρ×

~Rc + ~ρ

|~Rc + ~ρ|3
dm = −µ

∫
V

ρ× ~Rc

|~Rc + ~ρ|3
dm
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The gravity-gradient torque about the spacecraft’s mass center is then
expressed as

!M =
∫

!ρ × d !f = −µ

∫ !ρ × !Rc

| !Rc + !ρ|3
dm (6.143)

and we have the following approximation:

| !Rc + !ρ|−3 = R−3
c

{

1 + 2( !Rc · !ρ)

R2
c

+ ρ2

R2
c

}− 3
2

= R−3
c

{

1 − 3( !Rc · !ρ)

R2
c

+ higher-order terms

}

(6.144)

where Rc = | !Rc| and ρ = | !ρ|. Because
∫

!ρ dm = 0, the gravity-gradient torque
neglecting the higher-order terms can be written as

!M = 3µ

R5
c

∫
(!Rc · !ρ) ( !ρ × !Rc) dm (6.145)

This equation is further manipulated as follows:

!M = −3µ

R5
c

!Rc ×
∫

!ρ( !ρ · !Rc) dm

= −3µ

R5
c

!Rc ×
∫

!ρ !ρ dm · !Rc

= −3µ

R5
c

!Rc ×
[ ∫

ρ2 Î dm − Ĵ
]

· !Rc

= −3µ

R5
c

!Rc ×
∫

ρ2 Î dm · !Rc + 3µ

R5
c

!Rc × Ĵ · !Rc

= 3µ

R5
c

!Rc × Ĵ · !Rc

Since |~ρ| � |~Rc |, |~Rc + ~ρ|−3 ≈ 1
R3
c
− 3

~Rc ·~ρ
R5
c

. Then:

~M ≈ − µ

R3
c

∫
V
ρ× ~Rcdm + 3

µ

R5
c

∫
V
ρ× ~Rc(~Rc · ~ρ)dm

= 3
µ

R5
c

∫
V
ρ× ~Rc(~Rc · ~ρ)dm = −3

µ

R5
c

~R×c

(∫
V
~ρ~ρTdm

)
~Rc

= 3
µ

R5
c

~R×c I ~Rc − 3
µ

R5
c

~R×c

(∫
V

(|~ρ|2)dm

)
~Rc = 3

µ

R5
c

~R×c I ~Rc
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Gravity gradient.

Thus ~M = 3 µ
R5
c

~R×c I ~Rc . In the A axes, ~RA
c = [0 0 − Rc ]T .

Thus, in the B frame:

~RB
c = CB

A
~RA
c = −Rc

 −sθ2

sθ1cθ2

cθ1cθ2


Thus:

~MB = 3
µ

R3
c

 0 −cθ1cθ2 sθ1cθ2

cθ1cθ2 0 sθ2

−sθ1cθ2 −sθ2 0

 I1 0 0
0 I2 0
0 0 I3

 −sθ2

sθ1cθ2

cθ1cθ2


Operating:

~MB = 3n2

 0 −cθ1c
2θ2 sθ1cθ2

cθ1cθ2 0 sθ2

−sθ1cθ2 −sθ2 0

 −sθ2I1
sθ1cθ2I2
cθ1cθ2I3


= 3n2

 −cθ1c
2θ2sθ1(I2 − I3)

cθ1cθ2sθ2(I3 − I1)
sθ1cθ2sθ2(I1 − I2)


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Torque-Free rotation
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Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.

Replacing the gravity gradient torque in Euler’s equations, we
get ODEs for the angular velocity:

I1ω̇1 =
[
ω2ω3 − 3n2cθ1c

2θ2sθ1

]
(I2 − I3)

I2ω̇2 =
[
ω1ω3 + 3n2cθ1cθ2sθ2

]
(I3 − I1)

I3ω̇3 =
[
ω2ω1 + 3n2sθ1cθ2sθ2

]
(I1 − I2)

On the other hand since
~ωB
B/N = ~ωB

B/A + ~ωB
A/N = ~ωB

B/A + CB
A ~ω

A
A/N , there follows:

~ωB
B/A =

 ω1

ω2

ω3

− CB
A

 0
−n
0

 =

 ω1

ω2

ω3

+ n

 cθ2sθ3

cθ1cθ3 + sθ1sθ2sθ3

−sθ1cθ3 + cθ1sθ2sθ3


Then the kinematic ODEs are θ̇1

θ̇2

θ̇3

 =
1

cθ2

 cθ2 sθ2sθ1 sθ2cθ1

0 cθ1cθ2 −sθ1cθ2

0 sθ1 cθ1

 ω1

ω2

ω3

+
n

cθ2

 sθ3

cθ2cθ3

sθ2sθ3


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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Stable orientation
System of 6 nonlinear ODEs. Making zero the derivatives we
can find the equilibria:

0 =
[
ω2ω3 − 3n2

cθ1c
2
θ2sθ1

]
(I2 − I3)

0 =
[
ω1ω3 + 3n2

cθ1cθ2sθ2

]
(I3 − I1)

0 =
[
ω2ω1 + 3n2

sθ1cθ2sθ2

]
(I1 − I2)

~0 =
1

cθ2

 cθ2 sθ2sθ1 sθ2cθ1
0 cθ1cθ2 −sθ1cθ2
0 sθ1 cθ1

 ω1
ω2
ω3

 +
n

cθ2

 sθ3
cθ2cθ3
sθ2sθ3


One equilibrium is ω1 = ω3 = 0, ω2 = −n, θ1 = θ2 = θ3 = 0,.
Warning:there are other possible equilibria (i.e. θ1 = π).
If we are close to the equilibrium and to analyze its stability,
we can consider small angles and linealize the equations,
finding

ω̇1 = −
[
nω3 + 3n2

θ1

]
(I2 − I3)

ω̇2 = 3n2
θ2(I3 − I1)

ω̇3 = −nω1(I1 − I2)

θ̇1 = ω1 + nθ3

θ̇2 = ω2

θ̇3 = ω3 − nθ1
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Stable orientation
Taking a derivative in the angle equations

θ̈1 = ω̇1 + nθ̇3

θ̈2 = ω̇2

θ̈3 = ω̇3 − nθ̇1

Using these equations to eliminate the ωi ’s we find

I1θ̈1 = −
[
nθ̇3 + 4n2

θ1

]
(I2 − I3) + nI1θ̇3

I2θ̈2 = 3n2
θ2(I3 − I1)

I3θ̈3 = −n(θ̇1 − nθ3)(I1 − I2)− nI3θ̇1

The second equation is stable if I3 < I1. The first and third
are more challenging. Writing the system matrix:

d

dt


θ1
θ3

θ̇1

θ̇3

 =


0 0 1 0
0 0 0 1

4n2 I3−I2
I1

0 0 n
I3−I2+I1

I1

0 n2 I1−I2
I3

n
I2−I1−I3

I3
0



θ1
θ3

θ̇1

θ̇3



Define k1 = I2−I3
I1

y k3 = I2−I1
I3

. Since I1 + I2 > I3, I2 + I3 > I1,
I1 + I3 > I2, one gets k1, k3 ∈ [−1, 1].
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Stable orientation
The matrix writes

d

dt


θ1
θ3

θ̇1

θ̇3

 =


0 0 1 0
0 0 0 1

−4n2k1 0 0 n(1− k1)

0 −n2k3 n(k3 − 1) 0



θ1
θ3

θ̇1

θ̇3


Studying the eigenvalues of the matrix, we find the
characteristic polynomial:
λ4 + λ2n2(1 + k1(3 + k3)) + 4n4k1k3 = 0, cuya solución es:

λ = ±n

√
−(1 + k1(3 + k3))±

√
(1 + k1(3 + k3))2 − 16k1k3

2

Eigenvalues are stable (non-positive real part) if and only if
the two options insde the square root are real and negative,
this is: −(1 + k1(3 + k3))±

√
(1 + k1(3 + k3))2 − 16k1k3 < 0.

This only happens if:
−(1 + k1(3 + k3)) < 0, this is, 1 + k1(3 + k3) > 0.√

(1 + k1(3 + k3))2 − 16k1k3 is real, this
is,(1 + k1(3 + k3))2 − 16k1k3 > 0.
16k1k3 > 0 (if not there would be a positive number inside the
root) 57 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Stable orientation

Plotting the conditions in a chart:
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Fig. 6.9 Gravity-gradient stability plot.

The preceding results for linear stability of a rigid body in a circular orbit can
be summarized using a stability diagram in the (k1, k3) plane, as shown in Fig. 6.9.
For a further treatment of this subject, see Hughes [2].

Problems

6.10 Consider the sequence of C1(θ1) ← C3(θ3) ← C2(θ2) from the LVLH ref-
erence frame A to a body-fixed reference frame B for a rigid spacecraft in
a circular orbit.
(a) Verify the following relationship:




"b1
"b2
"b3



 =




c θ2 c θ3 s θ3 −s θ2 c θ3

−c θ1 c θ2 s θ3 + s θ1 s θ2 c θ1 c θ3 c θ1 s θ2 s θ3 + s θ1 c θ2

s θ1 c θ2 s θ3 + c θ1 s θ2 −s θ1 c θ3 −s θ1 s θ2 s θ3 + c θ1 c θ2








"a1

"a2

"a3





where c θi = cos θi and s θi = sin θi.
(b) Derive the following kinematic differential equation:




θ̇1
θ̇2
θ̇3



 = 1
cos θ3




cos θ3 −cos θ1 sin θ3 sin θ1 sin θ3

0 cos θ1 −sin θ1

0 sin θ1 cos θ3 cos θ1 cos θ3








ω1

ω2

ω3



 +




0
n
0





(c) For small attitude deviations from LVLH orientation, show that the lin-
earized dynamic equations of motion, including the products of inertia,

From 16k1k3 > 0, we obtain k1 and k3

with the same sign.

Since I3 < I1, one gets that
k1 − k3 > 0.

if k1 > k3 > 0 we obtain “Lagrange’s
region ” (right-upper triangle).

There is another region (known as
“De Bra-Delp”) obtained from
(1 + k1(3 + k3))2 − 16k1k3 > 0.
However it is sensitive to energy
dissipation, which makes it unstable.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Stable orientation

In summary:
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Fig. 6.9 Gravity-gradient stability plot.

The preceding results for linear stability of a rigid body in a circular orbit can
be summarized using a stability diagram in the (k1, k3) plane, as shown in Fig. 6.9.
For a further treatment of this subject, see Hughes [2].

Problems

6.10 Consider the sequence of C1(θ1) ← C3(θ3) ← C2(θ2) from the LVLH ref-
erence frame A to a body-fixed reference frame B for a rigid spacecraft in
a circular orbit.
(a) Verify the following relationship:




"b1
"b2
"b3



 =




c θ2 c θ3 s θ3 −s θ2 c θ3

−c θ1 c θ2 s θ3 + s θ1 s θ2 c θ1 c θ3 c θ1 s θ2 s θ3 + s θ1 c θ2

s θ1 c θ2 s θ3 + c θ1 s θ2 −s θ1 c θ3 −s θ1 s θ2 s θ3 + c θ1 c θ2








"a1

"a2

"a3





where c θi = cos θi and s θi = sin θi.
(b) Derive the following kinematic differential equation:




θ̇1
θ̇2
θ̇3



 = 1
cos θ3




cos θ3 −cos θ1 sin θ3 sin θ1 sin θ3

0 cos θ1 −sin θ1

0 sin θ1 cos θ3 cos θ1 cos θ3








ω1

ω2

ω3



 +




0
n
0





(c) For small attitude deviations from LVLH orientation, show that the lin-
earized dynamic equations of motion, including the products of inertia,

The practical stable zone corresponds
to k1 > k3 > 0, which in turn implies
that I2 > I1 and I2 > I3. Before we
already obtained I3 < I1. Thus axis 2
(orthogonal to the orbital plane) must
be the major axis, axis 3 (pointing to
the planet) the minor axis of inertia,
and axis 1 (in the direction of orbital
velocity) the intermediate.

Careful: the angles at the equilibrium
are 0o but they can also be 180o (the
“opposite” attitude is also stable!).

How many stable equilibria? How
many unstable equilibria?
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