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Attitude Differential Kinematic Equations

Remember that, when talking about displacements, the
differential kinematic equations (for short:kinematics) relate
the position and velocity vectors whereas the differential
dynamic equations (dynamics) relate the velocity and force
vectors.

For attitude, the kinematics relate the chosen representation
of attitude (DCM, Euler angles, quaternions,...) with the
angular velocity ~ω (normally, expressed in body axes).
Typically these equations are non-linear.

In attitude estimation (which is a part of inertial navigation),
gyros measure ~ω and one uses kinematics (integrating the
equation) to compute attitude (Lesson 6).

Thus, it is important to know the kinematics for the different
representations, to see the possible computational advantages
(hint: quaternions win).
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DCM kinematics I

Suppose we want to compute the attitude of a frame B w.r.t.
to A, using the DCM CB

A (t), knowing B is rotating w.r.t. A
at an angular velocity ~ωB

B/A.

By definition d
dtC

B
A =

CB
A (t+dt)−CB

A (t)
dt (if someone prefers

limits the reasoning is analogous)

Fixing A, we can imagine that B is moving, so in fact

B = B(t) and, formally, we can write CB
A (t) = C

B(t)
A .

Using this reasoning,

CB
A (t + dt) = C

B(t+dt)
A = C

B(t+dt)
B(t) C

B(t)
A . Then:

A−→B(t)−→B(t + dt)

During a time dt, the reference frame B has rotated w.r.t to
itself just a small angle; remembering Lesson 3:

C
B(t+dt)
B(t) = Id−

(
d~θB

)×
, where d~θB is a small angles vector.
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DCM kinematics II

Then: d
dtC

B
A =

CB
A (t+dt)−CB

A (t)
dt =

C
B(t+dt)
B(t)

CB
A (t)−CB

A (t)

dt =

(Id−(d~θB)
×

)CB
A (t)−CB

A (t)

dt = −(d~θB)
×

dt CB
A (t)

The matrix
(d~θB)

×

dt is written(
d~θB

)×
dt

=

 0 −dθ3
dt

dθ2
dt

dθ3
dt 0 −dθ1

dt

−dθ2
dt

dθ1
dt 0

 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
where ~ωB

B/A = [ω1 ω2 ω3]T since d~θB is the angle the body
rotates in a dt seen from its own frame, w.r.t. reference
system A: by definition this is the angular velocity. Then(

~ωB
B/A

)×
=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
Thus: d

dtC
B
A = ˙CB

A = −
(
~ωB
B/A

)×
CB
A . 4 / 17
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DCM kinematics III

A variation: transposing both sides of ˙CB
A = −

(
~ωB
B/A

)×
CB
A

we reach ĊA
B . = CA

B

(
~ωB
B/A

)×
DCM kinematics: matrix differential equation, solved
component-wise (system of 9 coupled scalar ODEs).
Main difficulty in numerical resolution: conservation of
orthogonality. Notice that, since I = (CB

A )(CB
A )T , taking

derivative: [
d

dt
(CB

A )

]
(CB

A )T + CB
A

d

dt
(CB

A )T

= −
(
~ωB
B/A

)×
CB
A (CB

A )T + CB
A CA

B

(
~ωB
B/A

)×
= −

(
~ωB
B/A

)×
+
(
~ωB
B/A

)×
= 0

Thus kinematics preserve orthogonality. But numerical
schemes will not.
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DCM kinematics IV

There exists algorithms to find, given a certain matrix, another
orthogonal matrix “closest” to the starting one in some sense.
For instance, given M, one can compute

Q = M(MTM)−1/2

which is orthogonal (and equal to M if it was orthogonal to
start with).
Problem: computing the square root of a matrix is not simple.
An iterative method that avoids the computation is the
following.
Start: Q0 = M; iterate Qk+1 = 2M(Q−1

k M + MTQk)−1, and
it’s easy to see that this converges to Q when k →∞, with
the condition that M is close to some orthogonal matrix (and
therefore invertible).
If M is very close to being orthogonal to start with,
convergence is quite fast!
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Euler angles kinematics I

Example: aircraft set of Euler angles (yaw,pitch,roll). Start
from the definition:

n
ψ−→
zn

S
θ−→
yS

S ′
ϕ−→
xS′

b

Angular velocity can be decomposed between frames as
~ωb/n = ~ωb/S ′ + ~ωS ′/S + ~ωS/n.

Writing the equation in b: ~ωb
b/n = ~ωb

b/S ′ + ~ωb
S ′/S + ~ωb

S/n

On the other hand:
~ωb
b/S ′ = [ϕ̇ 0 0]T , ~ωS ′

S ′/S = [0 θ̇ 0]T , ~ωS
S/n = [0 0 ψ̇]T .

Then: ~ωb
b/n = ~ωb

b/S ′ + Cb
S ′~ω

S ′

S ′/S + Cb
S ~ω

S
S/n and since

Cb
S = Cb

S ′C
S ′
S , we reach:

~ωb
b/n = ~ωb

b/S ′ + Cb
S ′~ω

S ′

S ′/S + Cb
S ′C

S ′
S ~ωS

S/n
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Euler angles kinematics II

Developing:

~ωb
b/n =

 ϕ̇
0
0

+

 1 0 0
0 cϕ sϕ
0 −sϕ cϕ

 0

θ̇
0


+

 1 0 0
0 cϕ sϕ
0 −sϕ cϕ

 cθ 0 −sθ
0 1 0
sθ 0 cθ

 0
0

ψ̇


=

 ϕ̇
0
0

+

 0

cϕθ̇

−sϕθ̇

+

 −sθψ̇sϕcθψ̇

cϕcθψ̇


=

 1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

 ϕ̇

θ̇

ψ̇


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Euler angles kinematics III

What we actually need is an expression for the time
derivatives of angles as a function of ~ωb

b/n = [ω1 ω2 ω3]T ,

therefore, inverting the matrix we reach ϕ̇

θ̇

ψ̇

 =

 1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

−1  ω1

ω2

ω3

 =
1

cθ

 cθ sθsϕ sθcϕ
0 cϕcθ −sϕcθ
0 sϕ cϕ

 ω1

ω2

ω3


Notice these are 3 non-linear ODEs, with several trig
functions.

There is a singularity at θ = ±90o. In fact Euler angles
are not well defined for this attitude. This singularity is
the reason why Euler angles are frequently avoided in
inertial navigation (for aircraft or spacecraft).

All other sets of Euler angles also exhibit singularities;
there is no combination of angles free of them.
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Euler’s axis and angle kinematics

Representation as Euler’s axis and angle, namely (~ebb/n, θ), has
the following kinematics:

For Euler’s angle: θ̇ = (~ebb/n)T~ωb
b/n

For Euler’s axis:

~̇ebb/n =
1

2

[(
~ebb/n

)×
+

1

tan θ/2

(
Id− ~ebb/n(~ebb/n)T

)]
~ωb
b/n

These are 4 ODEs, non-linear.

They exhibit a singularity at θ = 0.

If ~ω has a constant direction equal to the initial axis ~e, then
kinematics simplify to ~̇e = ~0 (this is, ~e(t) = ~e(0)) and
θ̇ = ‖~ω‖ (important case!).

In practice these are seldom used; we just apply them as an
intermediate step towards quaternion kinematics.
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Quaternion kinematics I

Remember the attitude quaternion defined from Euler’s angle
and axis:
q0 = cos θ/2, ~q = sin θ/2~ebb/n.
Taking derivative in the q0 definition and substituting the
kinematics for θ, one gets
q̇0 = −1

2 sin θ/2θ̇ = −1
2 sin θ/2(~ebb/n)T~ωb

b/n = −1
2~q

T~ωb
b/n

Taking derivative now in the ~q definition:

~̇q =
1

2
cos θ/2~ebb/nθ̇ + sin θ/2~̇ebb/n

Substituting Euler’s axis and angle kinematics:

~̇q =
1

2
cos θ/2~ebb/n(~ebb/n)T~ωb

b/n

+
1

2
sin θ/2

[(
~ebb/n

)×
+

1

tan θ/2

(
Id− ~ebb/n(~ebb/n)T

)]
~ωb
b/n

=
1

2

[
q× + q0Id

]
~ωb
b/n 11 / 17
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Quaternion kinematics II

Quaternion kinematics in matrix form:

d

dt


q0

q1

q2

q3

 =
1

2


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


 ωx

ωy

ωz


where ~ωb

b/n = [ωx ωy ωz ]T .
These are 4 bilinear ODEs, without singularities.
Notice the absence of trig functions, which helps precision.
These properties of quaternion kinematics are perhaps the
most important reasons why its use is wide among the
aerospace community to represent spacecraft (and aircraft!)
attitude. All computations can be done (internally) with
quaternions, and if necessary one can transform them to other
representations for visualization or other purposes, depending
on the application.
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Quaternion kinematics III

Remembering the definition of quaternion product as a
matrix, one can notice some similarities with the differential
kinematic equation. In fact, defining a “quaternion” qω with
zero scalar part and whose vector part is equal to the
components of the angular velocity, namely:

qω =
[

0 ωx ωy ωz

]T
kinematics can be expressed very simply as

q̇ =
1

2
q ? qω

The only drawback of using quaternion kinematics is that
numerical errors can creep in and make the quaternion
modulus different from 1. However, unlike the DCM, making
the quaternions verify its constraint is easy; just normalizing
the quaternion (dividing by its modulus) we can make its
modulus stay at one.
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Other kinematics

RP:

~̇g =
1

2

[
Id + ~g× + ~g~gT

]
~ω

MRP:

~̇p =
1 + ‖~p‖2

4

[
Id + 2

~p× + ~p×~p×

1 + ‖~p‖2

]
~ω

Rotation vector:

~̇θ = ~ω +
1

2
~θ × ~ω +

1

θ

(
1− θ

2 tan θ/2

)
~θ × (~θ × ~ω)
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Slew maneuvers

Given two different attitudes expressed as quaternions, q0 and
q1 and some time interval T , can we construct a continuous
angular velocity ~ω(t) such that q(t = 0) = q0 and
q(t = T ) = q1?
The key to do it is, as in interpolation, to find the so-called
rotation quaternion q2 representing the attitude between q0

and q1: q2 = 1
q0
? q1 = q∗0q1. From this quaternion extract

Euler’s angle θ1 and axis ~e which verify q2 =

[
cos θ1/2
~e sin θ1/2

]
,

this is, θ1 = 2 arccos(q20) and ~e = ~q2

sin θ1/2

The solution angular speed ~ω(t) goes in the direction of ~e and
represents the shortest rotation. Call its modulus ω(t). Then

θ(t) =
∫ t

0 ω(τ)dτ and the attitude evolves as

q(t) = q0 ?

[
cos(θ(t)/2)
sin(θ(t)/2)~e

]
Any ω(t) such that

∫ T

0
ω(τ)dτ = θ1 is a solution. 15 / 17
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Linearizing quaternion kinematics I

Linearizing is crucial in many aerospace guidance and control
applications. Asume we have a reference angular speed ~ωr

that generates a reference quaternion q̄ according to
kinematics. If ~ω = ~ωr + δ~ω, where δ~ω is “small,” what is the
new resulting quaternion due to this small change?
Use the error quaternion as q = q̄ ? δq, and let us determine
δq. Taking derivative:

q̇ = ˙̄q ? δq + q̄ ? δ̇q =
1

2
q ? qω

Using ˙̄q = 1
2 q̄ ? qωr :

1

2
q̄ ? qωr ? δq + q̄ ? δ̇q =

1

2
q̄ ? δq ? qω

Left-multiplying by q̄∗ and solving for ˙δq, one gets:

δ̇q =
1

2
δq ? qω −

1

2
qωr ? δq
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Linearizing quaternion kinematics II

Express now ~ω = ~ωr + δ~ω and remember the linearization of
δq as a function of the parameter ~a:

d

dt

[
1
~a/2

]
≈ 1

2

[
1
~a/2

]
?

[
0

~ωr + δ~ω

]
− 1

2

[
0
~ωr

]
?

[
1
~a/2

]
Remebering:

[
q′0
~q′

]
?

[
q0

~q

]
=

[
q′0q0 − ~q′T ~q

q0~q
′ + q′0~q + ~q′ × ~q

]
, one

has:

d

dt

[
1
~a/2

]
≈ 1

2

[
−~aT/2(~ωr + δ~ω) + ~ωT

r ~a/2
~ωr + δ~ω + ~a/2× (~ωr + δ~ω)− ~ωr − ~ωr × ~a/2

]
Since we are linearizing ‖~a‖‖δ~ω‖ ≈ 0 because it is a double
product of small terms. Operating:

d

dt

[
1
~a/2

]
≈ 1

2

[
0

δ~ω + ~a× ~ωr

]
This is: ~̇a ≈ δ~ω + ~a× ~ωr . A quite simple expression. Thus the
reference angular velocity also influences ~a. 17 / 17
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