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Attitude determination

Attitude determination is a process that estimates the present
attitude by using sensors and applicable algorithms. It can be
thought of as a “static” process that gives the picture of what
the present attitude is.

Attitude determination sensors, in general, determine a vector
~v in the body axes, this is, ~vB (in fact they use “sensor axes”
but the transformation to body axes should be known and it is
implicitly applied). It is assumed that said vector is known in
some reference axes (inertial axes or orbit axes), denoted as
~vN . As will be seen it is necessary to have two or more
measurements of this kind to be able to solve the problem.

In Lesson 6 we see sensors that from measurements of angular
velocity ~ωB continuously determine the attitude (a more
dynamic process that is typically referred to as attitude
estimation).
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Estimation from observations

In general, consider we have n (2 or more) sensors that
determine a vector ~vi , i = 1, . . . , n, in body axes, this is, ~vBi .
The vector is assumed known in some reference axes (inertial
axes or orbit axes, with respect to which we want to study the
spacecraft attitude) and denoted in that frame as ~vNi . Those
are unit vectors since in principle only directions matter.

Thus we have n equation written as ~vBi = CB
N ~v

N
i and we need

to solve for CB
N .

To simplify write ~Wi = ~vBi , ~Vi = ~vNi , A = CB
N . Thus, we have

n equations ~Wi = A ~Vi and need to solve for A.

These vectors will contain some errors.

If n = 2 there a simple method that can be applied known as
TRIAD. We’ll see other more general methods for n ≥ 2.

Question: what conditions would the
measurements/references verify if they are exact??
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TRIAD Method

Start from two observations related to the references through
the DCM: ~W1 = A ~V1 and ~W2 = A ~V2

Define the following vectors: ~r1 = ~V1, ~r2 =
~V1× ~V2

| ~V1× ~V2|
, and

~r3 =
~V1×~r2

| ~V1×~r2|
. Similarly: ~s1 = ~W1, ~s2 =

~W1× ~W2

| ~W1× ~W2|
, and

~s3 =
~W1×~s2

| ~W1×~s2|
. It is rather obvious that one should have now:

~s1 = A~r1, ~s2 = A~r2, and ~s3 = A~r3.
Construct now the matrices Mref = [~r1 ~r2 ~r3] and
Mobs = [~s1 ~s2 ~s3]. It holds that Mobs = AMref . In addition,
the columns of Mref are orthonormal between them. Thus,
Mref is invertible (and orthogonal!). Therefore we can solve
for A as A = MobsM

T
ref .

Notice that the method is not symmetric, as the measurement
labelled as 1 is given more importance. In practice, A will not
be the exact DCM matrix due to errors in the sensors. Thus,
one should use the “best” measurement as first.
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Wahba’s Problem

Consider now n measures satisfying ~Wi = A ~Vi . We pose the
problem as a least squares minimization problem.

Define the function L(A) = 1
2

∑n
i=1 ai | ~Wi − A ~Vi |2, where ai

are the weights given to each measurement (verifying∑n
i=1 ai = 1) and pose the mathematical objective of finding

A (orthogonal) such L(A) is minimized. In the literature this
is known as ”Wahba’s Problem”.

Since operating

| ~Wi − A ~Vi |2 = ( ~Wi − A ~Vi )
T ( ~Wi − A ~Vi ) = 2− 2 ~W T

i A ~Vi ,

one has

L(A) = 1−
n∑

i=1

ai ~W
T
i A ~Vi = 1− g(A),

where g(A) =
∑n

i=1 ai
~W T
i A ~Vi . Minimizing L(A) is thus

equivalente to maximizing g(A) (and notice g(A) ≤ 1!).
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Davenport’s q method

Writing A as a function of q by using Euler-Rodrigues
(A = (q2

0 − ~qT ~q)I + 2~q~qT − 2q0~q
×) we reach

g(A) =
n∑

i=1

ai ~W
T
i (q2

0−~qT ~q) ~Vi+2
n∑

i=1

ai ~W
T
i ~q~q

T ~Vi−2
n∑

i=1

ai ~W
T
i q0~q

× ~Vi

Develop now each term trying to reach a bilineal form
g(q) = qTKq:

Starting with the second term

2
n∑

i=1

ai ~W
T
i ~q~q

T ~Vi = 2
n∑

i=1

ai~q
T ~Wi

~V T
i ~q = 2~qTB~q = ~qT (B+BT ) ~q

where B =
∑n

i=1 ai
~Wi
~V T
i .

The first term can be written as
n∑

i=1

ai ~W
T
i (q2

0−~qT ~q) ~Vi = (q2
0−~qT ~q)

n∑
i=1

ai ~W
T
i
~Vi = q0σq0−~qT (σI)~q

where σ =
∑n

i=1 ai
~W T
i
~Vi = Tr(B).
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Davenport’s q method

Finally, the last term can be expressed as:

−2
n∑

i=1

ai ~W
T
i q0~q

× ~Vi = 2
n∑

i=1

ai ~W
T
i q0

~V×i ~q = 2q0~z
T ~q = q0~z

T ~q+~qT~zq0

where ~zT =
∑n

i=1 ai
~W T
i
~V×i , hence ~z = −

∑n
i=1 ai

~V×i
~Wi .

One has (~a×~b)× = ~b~aT − ~a~bT , what can be shown from the
identity (~a× ~b)× ~c . Observe then that

~z× = −
n∑

i=1

ai ( ~V
×
i
~Wi )
× =

n∑
i=1

ai ~Vi
~W T
i −

n∑
i=1

ai ~Wi
~V T
i = BT−B
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Davenport’s q method

Thus, the function g is expressed in terms of the quaternion as

g(q) = qTKq

where the matrix K can be found from the coefficients of a
newly defined matrix in terms of weights, measurements and
references B =

∑n
i=1 ai

~Wi
~V T
i , as follows

σ = Tr(B),

S = B + BT ,

~z× = BT − B

being K a 4× 4 matrix equal to

K =

[
σ ~zT

~z S − σId

]
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Davenport’s q method

Thus, the problem is now reduced to finding q (attitude
quaternion, this is, a norm 1 vector of four components) such
that g(q) = qTKq is maximized.
To solve a multivariable maximization problem with
constraints (qTq = 1) one can use Lagrange’s multipliers:

H = qTKq − λ(qTq − 1)
Taking derivative w.r.t. q and setting it to zero:
∂H
∂q = 2qTK − 2λqT = 0 −→ Kq = λq.
Thus λ must be an eigenvalue of K and q the associated
eigenvector of modulus 1 (there are two, but of opposing
signs, thus representing the same attitude). To find which
eigenvalue, replace the solution in g(q):
g(q) = qTKq = qTλq = λ
Therefore, the maximum attained at the critical point is equal
to the eigenvalue and the solution will be the eigenvector (of
modulus 1) associated to the maximum eigenvalue.
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The QUEST method

Davenport’s q method reduces the attitude determination
problem to an eigenvalue/eigenvector problem, however this
algebraic method might be problematic to solve on a satellite,
depending on computational resources available onboard.
In 1978 the QUEST (QUaternion ESTimator) method was
developed to avoid the computational burden.
The idea is to rewrite Kq = λq in terms of the K matrix:[

σ ~zT

~z S − σId

] [
q0

~q

]
= λ

[
q0

~q

]
Therefore two equations can be extracted.

σq0 + ~zT ~q = λq0, q0~z + S~q − σ~q = λ~q

Remembering Gibb’s vector ~g = ~q
q0

, one can manipulate the
second equation reaching

~z + [S − (σ + λ)I] ~g = 0
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The QUEST Method

Then ~g = [(σ + λ)I− S ]−1 ~z (but we don’t know λ, the
maximum eigenvalue)

A first approximation is to take λ ≈ 1 (which would be the
value if the measurements were without error). Then
~g = [(1 + σ)I− S ]−1 ~z

A better approximation is to find an explicit expression for the
maximum eigenvalue by finding the roots of the characteristic
equation of K , which is:

λ4 − (a + b)λ2 − cλ+ (ab + cσ − d) = 0

Where the coefficients are

a = σ − Tr[adj(S)],

b = σ − ~zT~z ,
c = det[S ] + ~zTS~z ,

d = ~zTS2~z .
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Errors in attitude determination

Errors are, by definition, unknown. Since, if they were known,
they would not be errors anymore!

However, it is important to characterize errors in some way.

The science that deals with unknowns is statistics (and its
associated math field, probability).

Engineers have to know about statistics, since it can be
applied to many fields. Here, we give a refresher for some
concepts necessary for estimating errors in attitude
determination.

We will always use normal distributions.

We go from sensor errors (typically given by their technical
specifications) to errors in attitude determination:
propagation of uncertainty.
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1-D Continuous RandomVariables

Let X ∈ R be a random continuous variable.

Remember that the cumulative distribution function (CDF)
F (x) is the probability that X ≤ x , which is written as
F (x) = P(X ≤ x).

The CDF is computed from the probability density function
(PDF) f (x): F (x) =

∫ x
−∞ f (y)dy .

One defines the operator “mathematical expectation” acting
over the function g(x) as E [g(X )] =

∫∞
−∞ g(y)f (y)dy . It is a

linear operator:
E [α1g1(X ) + α2g2(X )] = α1E [g1(X )] + α2E [g2(X )]. Two
importan examples are:

Mean: m(X ) = E [X ] =
∫∞
−∞ yf (y)dy .

Variance: V (X ) = E [(X −m(X ))2] = E [X 2]− (E [X ])2

(non-negative).
The typical deviation σ is the square root of the variance
σ =

√
V (X ) to make it have the same units as the mean.

Does it make sense for errors to have nonzero mean?
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Normal (Gaussian) distribution I

It is the most commonly used distribution in statistics. One
writes X ∼ N(m, σ2) and its PDF is

f (x) = 1
σ
√

2π
Exp

(
− (x−m)2

2σ2

)
.

Confidence intervals: if X ∼ N(m, σ2) then:

1-σ interval: P(X ∈ [m − σ,m + σ]) = 68.3%.
2-σ interval: P(X ∈ [m − 2σ,m + 2σ]) = 95.45%.
3-σ interval: P(X ∈ [m − 3σ,m + 3σ]) = 99.74%.
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Normal (Gaussian) distribution II

The central limit theorem shows that the sum of independent
random variables (with any kind of distribution), tends (in
average) to a normal distribution. Since large-scale errors
come from the sum and accumulation of many small-scale
errors (think for example about temperature fluctuations), this
justifies using normal distributions as a good model for errors.
An important property of a normal distribution is that the
sum of independent normals is again normal, this is, if
X ∼ N(mx , σ

2
x) and Y ∼ N(my , σ

2
y ), and they are

independent, then Z = X + Y is distributed as
Z ∼ N(mx + my , σ

2
x + σ2

y ).

Therefore σz =
√
σ2
x + σ2

y , this is, the typical deviation of the

sum of errors is the square root of the sum of squares of the
typical deviation of errors.
This rule is known as Root-Sum-of-Squares (RSS) and it is of
high importance when dealing with accumulated errors.
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Multivariate Continuous Random Variables

Let ~X ∈ Rn be a multivariate continuous random variables.
Each component of ~X follows a 1-D distribution (i.e. is a 1-D
random variable).
Following the 1-D case, we now define a joint CDF that is
computed from a joint PDF f (~x).

Similarly E [g(~X )] =
∫
Rn g(~y)f (~y)dy . Important cases:

Mean: ~m(~X ) = E [~X ] =
∫
Rn ~yf (~y)dy .

Covariance: Cov(~X ) = E [(~X −m(~X ))(~X −m(~X ))T ] = Σ. A
symmetric, non-negative definite matrix. The values of its
diagonal represent the variance the corresponding component
of ~X , whereas off-diagonal coefficients represent the
correlation between two components of ~X . One has
Σ = E [(~X ~XT ]−m(~X )m(~X )T .

For instance for n = 3 and writing ~X = [X ,Y ,Z ]:

Σ =

 σ2
x E [(X − mx )(Y − my )] E [(X − mx )(Z − mz )]

E [(X − mx )(Y − my )] σ2
y E [(Y − my )(Z − mz )]

E [(X − mx )(Z − mz )] E [(Y − my )(Z − mz )] σ2
z


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Multivariate normal distribution I

One writes ~X ∼ Nn( ~m,Σ) and its PDF is
f (~x) = 1

Det(Σ)(2π)n/2 Exp
(
− 1

2 (~x − ~m)TΣ−1(~x − ~m)
)
.

Confidence intervals become regions in Rn, defined by
P(~X ∈ Ω) = PΩ.
The shape of these regions is a multidimensional ellipsoid
described by (~x − ~m)TΣ−1(~x − ~m) = d2, where d depends on
PΩ. The size of the eigenvalues of Σ determines the size of
the ellipsoid, whereas the direction of the ellipsoid axes is
given by the eigenvectors of Σ.
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Multivariate normal distribution II

A classical example from aerial navigation or orbital
mechanics, one can describe an aircraft/spacecraft position in
some axes as δ~r = [δx δy δz ]T , as a multivariate normal with
n = 3, with mean zero (centered in the expected position of
the vehicle) and covariance matrix

Σ =

 σ2
x 0 0

0 σ2
y 0

0 0 σ2
z


Then one can visualize the movement of the vehicle with the
movement of the whole ellipsoid, representing a region (tube)
where the vehicle can be found with some degree of certainty.

Property: If ~X ∼ Nn( ~mx ,Σx) and ~Y ∼ Nn( ~my ,Σy ) and they

are independent, then if ~Z = ~X + ~Y it follows that
~Z ∼ Nn( ~mx + ~my ,Σx + Σy ).

Similarly if A~X + ~b where A and b are non-random (known) it
follows that A~X + ~b ∼ Nn(A ~mx + ~b,AΣxA

T ).
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Errors in attitude determination

How can one characterize attitude errors?
It will depend on the chosen attitude representation.
For instance if one chooses quaternions, then one could use
the quaternion error, parameterized δq(~a) and give a
multivariate distribution for ~a. Typically with zero mean and
some covariance. Then the approximate attitude q̂ is related
to the real attitude q as in Lesson 2: q̂ = q ? δq where

δq(~a) =
1√

4 + ‖~a‖2

[
2
~a

]
If one uses the DCM, it is required to find a way to
represent some kind of “DCM error”.
It does not make sense to use a 9-dimensional distribution
function to characterize the error of each component since
attitude does have 3 degrees of freedom, as we know.
Since errors are (or should be) small, we next characterize
DMC errors with an approximation for “small” DMC.
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DCM for small angles I

Let A and B be two reference frames related as follows

A
dθ1−→
xA

S1
dθ2−→
yS1

S2
dθ3−→
zS2

B

where we assume that dθi are small angles, so we can make
the approximations cos dθi ' 1 and sin dθi ' dθi .

Writting the DCMs taking into account the approximations:

C
S1
A

=

 1 0 0
0 1 dθ1
0 −dθ1 1

 , CS2
S1

=

 1 0 −dθ2
0 1 0

dθ2 0 1

 , CB
S2

=

 1 dθ3 0
−dθ3 1 0

0 0 1

 .

Then, since CB
A = CB

S2
C S2
S1
C S1
A , and neglecting all double

products of angles (i.e. dθidθj ' 0), one gets:

CB
A =

 1 dθ3 −dθ2
−dθ3 1 dθ1
dθ2 −dθ1 1

 = Id−

 0 −dθ3 dθ2
dθ3 0 −dθ1
−dθ2 dθ1 0

 = Id− d~θ×,
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DCM for small angles II

In the previous slides the definition d~θ = [dθ1 dθ2 dθ3]T was
made, and the matrix

d~θ× =

 0 −dθ3 dθ2

dθ3 0 −dθ1

−dθ2 dθ1 0

 ,
is the result of the operator × as was defined in Lesson 2.

Notice that under these hypothesis (small angles) it does not
matter the order of rotations and the angles add up, however
not all sets of Euler angles could be used since no axes can be
repeated (meaning: 1-2-3 o 3-2-1 or any similar set works, but
1-2-1 would not).

Exercise: work out the (very simple!) relationship between the
small angles vector and the vector ~a used in quaternion errors
by using Euler’s axis and angle.
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Error of a DCM

To model errors for a DCM we use the “small angles vector”
just defined, which will be randomly distributed.

Denote ĈB
N the matrix with errors (or actually ĈB

N = C B̂
n ),

where:

N −→B
δφx−→
xb

S1
δφy−→
yS1

S2
δφz−→
zS2

B̂

Then C B̂
N = C B̂

B CB
N and thus CB

N = CB
B̂
C B̂
N , and we define

δCB
N = CB

N − ĈB
N = CB

B̂
ĈB
N − ĈB

N = (CB
B̂
− Id)ĈB

N .

Assuming δ~φ = [δφx δφy δφz ]T are small, one has

C B̂
B = Id− δ~φ× (and CB

B̂
= Id + δ~φ×).

Then the relationship between the “error matrix” δCB
N and δ~φ

is δCB
N = (Id + δ~φ× − Id)ĈB

N = δ~φ×ĈB
N .And one has

CB
N = (Id + δ~φ×)ĈB

N .
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Covariance matrix for TRIAD
For TRIAD, one can model the error as a small angles vector

δ~φ given by a multivariate normal with zero mean and
covariance Pφφ. One can prove:

Pφφ = σ
2
1Id +

1

| ~W1 × ~W2|2

(
(σ2

2 − σ
2
1 )W1W

T
1 + σ

2
1 (WT

1 W2)(W1W
T
2 + W2W

T
1 )
)

where σ1 represents the angular error (given as typical
deviation) of the first measurement and σ2 the error of the
second measurement.

Notice, as expected, that the first measurement has more
influence on the final error.
If the measurements are orthogonal, then:

Pφφ = σ
2
1Id + (σ2

2 − σ
2
1 )W1W

T
1

Imagine for instance if W1 is the x axis, then this results in
Pφφ diagonal, with the (1,1) entry as σ2

2 and the other
diagonal coefficients as σ2

1: Can you interpret this?
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Covariance matrix for q

Now ~a represents the attitude error (via δq(~a)) and therefore
we model ~a as a multivariate distributed vector with zero
mean and covariance matrix Pa.
In the q algorithm each measurement has an error represented
by its variance σ2

i . The global error of q depends on the
chosen weights and one can prove the following relationship

Pa =

Id− n∑
i=1

ai ~Wi
~WT
i

−1  n∑
i=1

a2
i σ

2
i

[
Id− ~Wi

~WT
i

]Id− n∑
i=1

ai ~Wi
~WT
i

−1

A good rule of thumb for ai is make it proportional to the
inverse of the variances σ2

i , however since the ai ’s add up to

1, one chooses ai =

1
σ2
i∑n

j=1
1
σ2
j

so Pa =

[∑n
j=1

1
σ2
j

Id−
∑n

i=1
1
σ2
i

~Wi
~WT
i

]−1

.

Note that
[
Id−

∑n
i=1 ai

~Wi
~W T
i

]
should be invertible.

Exercise: consider the particular case analyzed for TRIAD
with equal weights and compare.
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