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Spacecraft Attitude

The attitude of a Spacecraft is its orientation with respect to
a given reference frame (typically, inertial or orbit axes).
Under the hypothesis of the spacecraft being a rigid body, it is
enough to know the orientation of the body axes (i.e., a
reference frame fixed to the spacecraft). Thus one needs to
study the orientation of a reference frame w.r.t. another.
The set of orientations between two frames is denoted as
SO(3): the special orthogonal group of dimension 3.
Aircraft classically use Euler angles (yaw, pitch, roll). For
spacecraft there are several alternatives (also applicable to
aircraft), with their corresponding advantages and
disadvantages:

Director Cosine Matrix (DCM)
Euler Angles (12 possible sets)
Euler’s Angle and Axis (a.k.a. Eigenaxis)
Rotation vector
Quaternions
Rodrigues parameters (a.k.a. Gibbs’ vector)
Modified Rodrigues parameters 2 / 30
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SO(3) Representations: Main features

Each representation has advantages and disadvantages, as will
be seen.
Each representation is defined by n parameters.

If n = 3 the representation is minimal (since there are 3
degrees of freedom). However, minimal representations always
have singularities.
If n > 3 then there will be n− 3 constraints for the parameters.

For a given representation, it might happen that two different
values of the parameters represent the same physical attitude.
Then, it is said that the representation has ambiguities. The
set of parameters that needs to be eliminated to avoid
ambiguities is called the “shadow set”.
In this lesson we study:

How to switch between different representations
How to compose attitudes for each representation when there
are more than 2 reference frames
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SO(3) Representations: Main features

Another interesting feature is the capacity to generate smooth
“paths” of attitude, this is, a continuous set of rotations to
get from an initial attitude to a final attitude.

One can talk about passive and active interpretations between
reference frames.

In the passive representation (a.k.a. “alias”) one transform
the reference frames (i.e. their basis vectors). Then, vectors
also transform since the reference frame change. However,
they do so in the opposite way. For instance, if the x-y axes
rotate 45o (along the z axis), a vector would rotate 45o in the
opposite direction (along the -z axis). This is the preferred
interpretation. Plot it!

The active interpretation (a.k.a. “alibi”) looks at the
transformation of vectors (therefore reference frames
transform in the opposite way).
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Director Cosine Matrix (DCM) I
Let S and S’ be reference frames, respectively, with unitary
basis vectors (~ex , ~ey , ~ez) and (~ex ′ , ~ey ′ , ~ez ′). The orientation
(attitude) of S’ w.r.t. S is totally determined by the change of

basis matrix CS ′
S . This matrix allows, given any generic vector

~v expressed in the basis of S as ~vS , to change its basis as
follows: ~vS

′
= CS ′

S ~v
S . Denote:

CS′
S =

 c11 c12 c13
c21 c22 c23
c31 c32 c33



Note: ~eS
′

x = C S ′

S eSx = C S ′

S [1 0 0]T = [c11 c21 c31]T .

Therefore:
~ex ′ · ~ex = (~eS

′

x ′ )
T~eS

′
x = [1 0 0][c11 c21 c31]T = c11.

In addition:
c21 = ~ey′ · ~ex , c31 = ~ez′ · ~ex

c12 = ~ex′ · ~ey , c22 = ~ey′ · ~ey , c32 = ~ez′ · ~ey

c13 = ~ex′ · ~ez , c23 = ~ey′ · ~ez , c33 = ~ez′ · ~ez
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Director Cosine Matrix (DCM) II
Thus:

CS′
S =

 ~ex′ · ~ex ~ex′ · ~ey ~ex′ · ~ez
~ey′ · ~ex ~ey′ · ~ey ~ey′ · ~ez
~ez′ · ~ex ~ez′ · ~ey ~ez′ · ~ez


By a similar reasoning:

CS
S′ =

 ~ex′ · ~ex ~ey′ · ~ex ~ez′ · ~ex
~ex′ · ~ey ~ey′ · ~ey ~ez′ · ~ey
~ex′ · ~ez ~ey′ · ~ez ~ez′ · ~ez

 = (CS′
S )T

And since C S
S ′ = (C S ′

S )−1, we get that C S
S ′ is orthogonal,

this is: (C S ′

S )−1 = (C S ′

S )T . The name “Director Cosine
Matrix” is also justified since the dot product of unitary
vectors is the cosine of the angle they form.
Another property is that det(C S

S ′) = 1. This is due to the
fact that 1 = det(Id) = det((C S

S ′)(C S
S ′)
−1) =

det((C S
S ′)(C S

S ′)
T ) =

(
det(C S

S ′)
)2

. Therefore
det(C S

S ′) = ±1. The sign + corresponds to both S and S’
being right-handed reference frames, which are the ones
used in practice. 6 / 30
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Director Cosine Matrix (DCM) III

This attitude representation has 9 parameters. These are
dependent from each other, this is, the coefficients of the C
matrix cannot be arbitrary (the matrix has to be orthogonal
and with determinant 1). In particular, one must have 6
independent constraints which determine that the matrix is
orthogonal.

Composition: assume that the attitude of S2 w.r.t S1 is given
by CS2

S1
and the attitude of S3 w.r.t S2 is given by CS3

S2
. Then

it it easy to see that the attitude of S3 w.r.t. S1 can be found
by applying the succesive transformations, this is,
CS3
S1

= CS3
S2
CS2
S1

. Therefore attitude “composition” is given by
a simple matrix product (note that the order matters:
non-commutativity of rotations).
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Euler angles I

In general attitude can be mathematically described by three
rotations in the main axes, where any axis can be selected for
the first, second and third rotation with the only rule that one
cannot repeat a consecutive axis (i.e. 1st and 2nd, and 2nd
and 3rd must be different).
As an example, the classical aircraft rotation sequence is:

n
ψ−→
zn

S
θ−→
yS

S ′
ϕ−→
xS′

BFS

There exists other options, more suited to spacecraft:

n
θ1−→
xn

S
θ2−→
yS

S ′
θ3−→
zS′

BFS n
Ω−→
zn

S
i−→
xS

S ′
ω−→
zS′

BFS

There are 12 possible sequences of Euler angles to represent
the attititude. This is a minimal representation (3 angles).
One can obtain the DCM from Euler angles by multiplying
elementary rotation matrices. For instance
Cb
n (ψ, θ, ϕ) = Cb

S ′(ϕ)CS ′
S (θ)CS

n (ψ).
8 / 30
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Euler angles II
In the figure, the typical aircraft Euler angles
are used w.r.t. orbit axes.

First a rotation around the axis labelled as
3 (yellow): yaw.
Next, a rotation about the resulting axis 2:
pitch
Finally, a rotation about the resulting axis
3: roll

Notice that a rotation affects the position of
the axes for the next rotations.

This sequence is denoted as (3,2,1). The
other sequences of Euler angles contained in
the previous slide are, respectively, (1,2,3)
and (3,1,3).

One can choose a sequence depending on
the angles which are of interest for a given
application or study (see Lesson 5).
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ô

Other possible
sequences: (1,2,1),
(1,3,1), (1,3,2),
(2,1,2), (2,1,3),
(2,3,1), (2,3,2),
(3,1,2), (3,2,3).

9 / 30



Spacecraft Attitude. Representation methods.
Director Cosine Matrix
Euler Angles
Euler’s angle and axis. Quaternions. Other representations.

Euler angles III

For the sequence (3,2,1) with angles denoted as (ψ, θ, ϕ), one
has:

Cb
n =

 cθcψ cθsψ −sθ
−cϕsψ + sϕsθcψ cϕcψ + sϕsθsψ sϕcθ
sϕsψ + cϕsθcψ −sϕcψ + cϕsθsψ cϕcθ



Notice that (180o + ψ, 180o − θ, 180o + ϕ) defines the
same attitude that (ψ, θ, ϕ). Therefore typically one limits
θ ∈ [−90o, 90o] (the angles that are excluded from these
values constitute the shadow set).
Given the DCM, to obtain the Euler angles, one can
derive the following formulas:

1 θ = − arcsin c13.
2 From cosψ = c11/ cos θ, sinψ = c12/ cos θ, obtain ψ.
3 From sinϕ = c23/ cos θ, cosϕ = c33/ cos θ, obtain ϕ.

For other sequences, one can get similar relations from
the explicit expression of the DCM.
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Euler angles IV

Main advantage: physically meaningful.

One has, however, to be careful when composing attitude.

Suppose the attitude of S2 w.r.t. S1 is given by (ψ1, θ1, ϕ1)
and the attitude of S3 w.r.t. S2 is given by (ψ2, θ2, ϕ2).
Denote as (ψ3, θ3, ϕ3) the attitude of S3 w.r.t. S1. In general
ψ3 6= ψ1 + ψ2, θ3 6= θ1 + θ2, ϕ3 6= ϕ1 + ϕ2!!

The best way to obtain (ψ3, θ3, ϕ3) is to compute them from
CS3
S1

= CS3
S2

(ψ2, θ2, ϕ2)CS2
S1

(ψ1, θ1, ϕ1). This is, going to a
DCM representation, composing, and going back to Euler
angles.

This shows that it might be complex to work with Euler
angles.

Main disadvantage: singularities (as will be seen in Lesson 4).

11 / 30
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Euler’s angle and axis I

Euler’s Rotation Theorem: “the most general movement of a
solid with a fixed point is a single rotation around a unique
axis.”
Note: We are considering a rotation at a given time (a
“snapshot”), not a rotation that is changing as time evolves
(that is the subject of Lesson 4).
Let us call a unit vector in the direction of that axis (Euler’s
Axis) as ~eS/S ′ , and the magnitude of the rotation (Euler’s
Angle) as θ.
Thus, ‖~eS/S ′‖ = 1 and if we write ~eS

′

S/S ′ = [ex ey ez ]T it

follows that e2
x + e2

y + e2
z = 1.

A useful formalism is the following. Given a vector
~v = [vx vy vz ]T define the operator × acting on ~v (denoted
~v×) as follows:

~v× =

 0 −vz vy
vz 0 −vx
−vy vx 0
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Euler’s angle and axis II

The operation ~v× helps to quickly compute the cross product
~v × ~w , for any vector ~w , in a reference frame S :
(~v × ~w)S =

(
~vS
)×

~wS .
Thus, if the attitude using Euler’s angle and axis is given by
(~eS

′

S/S ′ , θ), how to go from there to the DCM and the other
way around? The × operator helps.
One has

CS ′
S = cos θId + (1− cos θ)~eS

′

S/S ′(~e
S ′

S/S ′)
T − sin θ

(
~eS
′

S/S ′

)×
.

This is known as the Euler-Rodrigues formula and it is
mathematically proven later.
On the other hand, CS ′

S , and computing Tr(CS ′
S ) and

(CS ′
S )T − CS ′

S , one gets:

cos θ =
Tr(CS′

S )− 1

2(
~eS
′

S/S′

)×
=

1

2 sin θ

(
(CS′

S )T − CS′

S

)
13 / 30
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Euler’s angle and axis III

Another relationship between Euler’s angle and axis and the
Director Cosine Matrix is given by the algebraic properties of
the DCM.

Since the DCM is orthogonal, it can be shown that 1 is always
an eigenvalue of it. If C is the DCM, then the eigenvector
associated to the 1 is the Euler’s axis ~e since C~e = ~e.

On the other hand, the other two eigenvalues of the DCM are
precisely eiθ, e−iθ.

This is another way of computing Euler’s angle and axis, by
evaluating the eigenvalues and eigenvectors of the DCM.

14 / 30
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Euler’s angle and axis IV

Therefore, in this representation, one describes the attitude
with four parameters: three componentes of an unit vector
and an angle. These have a clear physical meaning.

Notice that the attitude given by (~eS
′

S/S ′ , θ) and by

(−~eS ′S/S ′ , 360o − θ) is exactly the same. To avoid this

ambiguity, one can constraint θ to [0, 180o).

The “opposite” attitude (the one from S w.r.t. S ′) is given by
(−~eSS ′/S , θ). Notice also that eSS ′/S = eS

′

S ′/S .

Composition: if the attitude of S2 w.r.t. S1 is given by
(~eS2

S1/S2
, θ1) and the attitude of S3 w.r.t. S2 is given by

(~eS3

S2/S3
, θ2), then, denoting as (~eS3

S1/S3
, θ3) the attitude of S3

w.r.t. S1, one obtains:
cos θ3 = − cos θ1 cos θ2 + sin θ1 sin θ2(~eS1/S2

· ~eS2/S3
)

e
S3
S1/S3

=
1

sin θ3

(
sin θ1 cos θ2~eS1/S2

+ cos θ1 sin θ2~eS2/S3
+ sin θ1 sin θ2(~eS1/S2

× ~eS2/S3
)
)
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Rotation vector

A minimal attitude representation can be obtained by
combining Euler’s axis and angle in a single vector as follows:
~θ = θ~e.

This representation can be useful as it physically represents
the angular speed one would need to maintain constant from
a second for one reference frame respect to another, that start
being the same, to obtain the attitude given by (~e, θ).

On the other hand for large rotations it is not an adequate
rotation. Note that a rotation of 0o and 360o are physically
the same but the first is ~θ = ~0 and the second is not
univocally defined.

Thus, the representation is reserved for theoretical analysis of
for small angles (or to determine the angular velocity
necessary to perform a fixed rotation).
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Quaternions

Quaternions were first described by Hamilton (19th century),
who considered them his greatest creation; he thought they
were going to be used as Physics “universal language”.
However, they were soon substituted by vectors (Gibbs) and
matrices (Cayley).

Remember a complex number z can be thought of as a “ 2-D
vector”, which can be written in terms of its components as
z = x + iy . Complex number of unity modulus can be used to
represent a 2-D rotation, since if |z | = 1, one can write
z = eiθ, and it is well-known multiplying by this number
rotates the phase by an angle θ.

Quaternions extend complex number to “4 dimensions”. A
quaternion q can be written as: q = q0 + iq1 + jq2 + kq3.

q0 is the scalar part and ~q = [q1 q2 q3]T the “vector part” of
q.
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Quaternion Algebra I

To better understand Quaternions it’s important to know their
algebraic properties, this is, how to operate with Quaternions.

Sum: Component-wise, i.e., given q = q0 + iq1 + jq2 + kq3

and q′ = q′0 + iq′1 + jq′2 + kq′3, one has that
q′′ = q + q′ = q′′0 + iq′′1 + jq′′2 + kq′′3 is given by the obvious
formulae:
q′′0 = q0 + q′0, q′′1 = q1 + q′1, q′′2 = q2 + q′2, q′′3 = q3 + q′3.

Product: denote by ?, again, component-wise, knowing the
following rules of multiplication:
i ? i = −1, i ? j = k, i ? k = −j , j ? i = −k , j ? j = −1,
j ? k = i , k ? i = j , k ? j = −i , k ? k = −1.

Hamilton’s formula follows: i ? j ? k = −1.

Notice that q ? q′ 6= q′ ? q: Quaternion multiplication is NOT
commutative!

18 / 30
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Quaternions: Plaque on Broom Bridge (Dublin)
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Quaternion Algebra II

Matrix form of the product: It is possible to write the product
q′′ = q′ ? q in matrix form as follows:

q′′0
q′′1
q′′2
q′′3

 =


q′0 −q′1 −q′2 −q′3
q′1 q′0 −q′3 q′2
q′2 q′3 q′0 −q′1
q′3 −q′2 q′1 q′0




q0

q1

q2

q3


“vector” form of the product: q′′0 = q′0q0 − ~q′T ~q,
~q′′ = q0~q

′ + q′0~q + ~q′ × ~q.
Conjugate: As for complex numbers, given
q = q0 + iq1 + jq2 + kq3 one defines the conjugate of q as
q∗ = q0 − iq1 − jq2 − kq3.
Modulus: The definition of the modulus of
q = q0 + iq1 + jq2 + kq3 is |q|2 = q ? q∗ = q2

0 + q2
1 + q2

2 + q2
3 .

Property: |q ? q′| = |q||q′|.
Division: One defines division using the conjugate:
q′/q = q′/q ? q∗/q∗ = (q′ ? q∗)/|q|2. 20 / 30
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Attitude representation using Quaternions I

Given the attitude represented by Euler’s axis and angle, ~e
and θ, one can “codify” that attitude in terms of Quaternions
as follows: q0 = cos θ/2, ~q = sin θ/2~e.
Notice therefore that if q represents an attitude, it follows
that |q| = 1 (and vice-versa!).

Remember the × operator and apply it to the quaternion ~q×:

~q× =

 0 −q3 q2
q3 0 −q1
−q2 q1 0


To go from DCM C to Quaternions, use:q0 =

√
1+Tr(C)

2
y

~q× = 1
4q0

(
CT − C

)
.

To go from Quaternions to DCM use Euler-Rodrigues
formula for Quaternions:
C =

(
q2

0 − ~qT~q
)
Id + 2~q~qT − 2q0~q

×.
One can transform a vector ~v without need of the DCM

using the formula:

[
0
~vB

]
= q∗B/A ?

[
0
~vA

]
? qB/A

21 / 30
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Attitude representation using Quaternions II
Euler-Rodrigues formula in matrix form:

C(q) =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3


Quaternions are an attitude representation that requires 4
parameters, with the additional constraint |q| = 1.
Ambiguities: q and −q represent the same attitude, since
if q corresponds to (~e, θ), then −q corresponds to (−~e,
360− θ). Prove it!
Disadvantage: no physical sense unless you have some
experience using them.
Notice: To convert from DCM to Quaternions and back
no trig formulas are required, increasing the precission.
If qS ′S represents the attitude of S’ w.r.t. S y qS ′′S ′
represents the attitude of S” w.r.t. S’, then qS ′′S , the
attitude of S” w.r.t. S, can be computed
qS ′′S = qS ′S ? qS ′′S ′ (notice that the product is in the
other direction, comparing with the DCM). 22 / 30
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Computing Quaternions from Euler angles

For the classical (3,2,1) sequence, notice that
The quaternion corresponding to the Euler angles (ψ, 0, 0) is
qψ = cosψ/2 + k sinψ/2.
The quaternion corresponding to the Euler angles (0, θ, 0) is
qθ = cos θ/2 + j sin θ/2.
The quaternion corresponding to the Euler angles (0, 0, ϕ) is
qϕ = cosϕ/2 + i sinϕ/2.

Thus, given the Euler angles (ψ, θ, ϕ) one obtains a
corresponding quaternion using the composition rule as
q = qψ ? qθ ? qϕ.

Explicitly doing the product one gets

q = (cosψ/2 cos θ/2 cosϕ/2 + sinψ/2 sin θ/2 sinϕ/2)

+i (cosψ/2 cos θ/2 sinϕ/2− sinψ/2 sin θ/2 cosϕ/2)

+j (cosψ/2 sin θ/2 cosϕ/2 + sinψ/2 cos θ/2 sinϕ/2)

+k (sinψ/2 cos θ/2 cosϕ/2− cosψ/2 sin θ/2 sinϕ/2) .
23 / 30
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Quaternions: a word of caution

Careful: some authors (STK as well) write q4 instead of q0 so
the scalar part is the last component of the quaternion.

Some authors define the quaternion product in an opposite
way, so i ? j = −k , etc. The consequence of this is that many
formulas change:

The quaternion composition rule now is as for the matrices
(from right to left).
The formula for vector transformation becomes[

0
~vB

]
= qB/A ?

[
0
~vA

]
? q∗B/A

Also, if one wants to use our definition of quaternions but to
rotate a vector (instead of changing its reference frame, this is,

to use the active interpretation) then:

[
0
~v ′

]
= q ?

[
0
~v

]
? q∗

where ~v ′ is the vector ~v rotated by an axis and angle defined
by q, which is the formula one may find over the internet.
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Quaternions: shortest path and interpolation

Given two quaternions q0 and q1 representing two different
attitudes, can one construct a ‘̀ınterpolation path,”
continuous, q(s) such that q(0) = q0 and q(1) = q1?
The way to do it is to first find q2 representing the attitude
between q0 and q1 (the rotation quaternion):
q2 = 1

q0
? q1 = q∗0q1. From this quaternion extract Euler’s

angle and axis ( θ and ~e):q2 =

[
cos θ/2
sin θ/2~e

]
.

Now the solution of the problem is q(s) which is the product
of q0 and another quaternion coming from Euler’s axis ~e and
angle sθ, so that when s = 0 it is the unity quaternion (and
the product is q0) and when s = 1 it is q2 (and the product is
q1):

q(s) = q0 ?

[
cos(sθ/2)
sin(sθ/2)~e

]
25 / 30
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Rodrigues Parameters I

Atittude representation using Rodrigues Parameters (RP, also
called Gibbs vector) can be easily obtained from the
quaternion as ~g = ~q

q0
, obviously this is only valid if q0 > 0

(i .e.θ < 180o) because otherwise one gets a singularity. To
recover the quaternion from ~g :

‖~g‖2 =
‖~q‖2

q2
0

=
1− q2

0

q2
0

Thus q0 = ±1√
1+‖~g‖2

. And therefore:

q =
±1√

1 + ‖~g‖2

[
1
~g

]
In terms of Euler’s axis and angle, ~g = ~e tan θ

2 .
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Rodrigues Parameters II

The relationship with the DCM is as follows:

C = Id+2
~g×~g× − ~g×

1 + ‖~g‖2
= (Id−~g×)(Id+~g×)−1 = (Id+~g×)−1(Id−~g×)

On the other hand, since q0 =

√
1+Tr(C)

2 and
~q× = 1

4q0

(
CT − C

)
, one gets:

~g× =
q×

q0
=

1

4q2
0

(
CT − C

)
=

CT − C

1 + Tr(C )

Composition follows a simple rule.If ~gS ′S represents the
attitude of S’ w.r.t. S and ~gS ′′S ′ represents the attitude of S”
w.r.t. S’, then ~gS ′′S , the attitude of S” w.r.t. S, is computed
as:

~gS ′′S =
~gS ′′S ′ + ~gS ′S − ~gS ′′S ′ × ~gS ′S

1− ~gS ′S · ~gS ′′S ′
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Modified Rodrigues Parameters

The representation using Modified Rodrigues Parameters
(MRP) is quite recent (1962) but popular in control
applications. Similarly to RP, one can get it from the
quaternion, by defining ~p = ~q

1+q0
. To recover the quaternion

from the MRP:

‖~p‖2 =
‖~q‖2

(1 + q0)2
=

1− q2
0

(1 + q0)2
=

1− q0

1 + q0

Then q0 = 1−‖~p‖2

1+‖~p‖2 . Therefore:

q =
1

1 + ‖~p‖2

[
1− ‖~p‖2

2~p

]
In terms of Euler’s axis and angle, ~p = ~e tan θ

4 .
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Modified Rodrigues Parameters II

The relationship of MRP with the DCM is

C = Id+
8~p×~p× − 4(1− ‖~p‖2)~p×

(1 + ‖~p‖2)2
=
[
(Id− ~p×)(Id + ~p×)−1

]2
Since q and −q represent the same attitude, then ~p = ~q

1+q0

and ~p′ = −~q
1−q0

also represent the same attitude. How we can

relate both?

‖~p‖2 =
1− q0

1 + q0
=

1

‖~p′‖2

Thus ~p and −~p
‖~p‖2 represent the same attitude. Limiting

‖~p‖ ≤ 1 we avoid the ambiguity (notice however that there
are some other ambiguities if ‖~p‖ = 1).
Composition is complex compared to RPs. If ~pS ′S represents
the attitude of S’ w.r.t. S and ~pS ′′S ′ represents the attitude of
S” w.r.t. S’, then ~pS ′′S , the attitude of S” w.r.t. S, is:

~pS′′S =
(1− ‖~pS′S‖2)~pS′′S′ + (1− ‖~pS′′S′‖2)~pS′S − 2~pS′′S′ × ~pS′S

1 + ‖~pS′S‖2‖~pS′′S′‖2 − 2~pS′S · ~pS′′S′ 29 / 30
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The error quaternion

To consider errors or to linealize any (nonlinear) equation
containing Quaternions around a (reference) value q̄, the
classical “aditive” formulation q = q̄ + δq does not work well,
because even if q̄ and δq have unit modulus, the sum of them
may not be unitary.
It is more convenient to use a “multiplicative” formulation
where q = q̄ ? δq, andδq is known as the error quaternion
which should be close to the unity quaternion q = [1 0 0 0]T .
δq has 4 components but, obviously, only 3 d.o.f.; these can
be codified in a vector ~a “small” (in fact equivalent to 2~g):

δq(~a) =
1√

4 + ‖~a‖2

[
2
~a

]
Notice that δq(~a) has unity modulus, as expected. If one
finally needs to linealize, one gets:

δq(~a) ≈
[

1
~a/2

]
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