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Introduction |

m The great majority of spacecraft have instruments or antennas
which must point to one direction. For example:
m Space telescopes (Hubble).
m Communications satellites must point their antennas.
m Solar panels must maximize their solar exposition.
m Photography cameras must point to one location.
m Radiators must be pointed to deep space.
m The thrusters of a spacecraft must be correctly aligned.
m Other scientific instruments and sensors.
m In addition there are other kinds of requirements:
m Space telescopes (Hubble).
m Target tracking.
m Forbidden directions (e.g. the direction to the Sun for sensitive
optics).
m A spacecraft’s orientation (with respect to another frame of
reference of interest, e.g. inertial or the orbit axes) is called
attitude.
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Introduction |

m The subsystem responsible for estimating and controlling the
attitude is the ADCS (Attitude Determination and Control
System) whose basic functions are:

m Determine the current or instantaneous attitude, from the
measurements of the sensors and the knowledge of the
previous attitude (estimation problem).

m Use the available actuators in order to stabilize the attitude
and correct possible deviations with respect to a desired
attitude (control problem).

m Other possible functions:

m Generate attitude maneuvers (slew maneuvers), for example, in
order to go from an initial attitude to a desired final one
(attitude transfer problem)

m Track a target (tracking problem).
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Attitude Representation and Kinematics

m Under the assumption of a rigid body,
attitude is established by specifying the
orientation of the body axes with respect
to other axes of interest.

m For example, the orbit axes as shown in
the figure, whose definition depends on
the specific orbit.

m The relationship between two frames of
reference can be represented in several
ways: using matrices, Euler angles or
other mathematical objects.

m Attitude kinematics is a combination of relationships (in the
form of differential equations) between the spacecraft’s
angular velocity, @, and its attitude, represented by any of the
mathematical objects previously mentioned. -
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Attitude Dynamics

m Attitude dynamics relates the spacecraft’s angular velocity
with the moment of forces acting on it, and is based on the
Angular Momentum Theorem; the resulting differential
equations are known as Euler's Equations.

m The movement of a body in torque-free precession (moments
equal to zero) is the most simple solution of these equations,
and even explicit in the axisymmetric case; it is a precession of
the rotation axes around another fixed axis.

m A body in rotation that is subject to a constant moment does
not react “intuitively” but rather suffers perturbations in its
initial rotation, causing precession and nutation movements.

m This resistance to perturbing moments is named gyroscopic
effect. It is the basis of the spinning top’s behavior.
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Rotational Stability
. m For the body in the figure, h = I, b =1,, B = I are
1 the principal moments of inertia (given the shape of
the body). In addition /; > h > |5 because of the
MINOR apparent dimensions in the figure, so the x axis is the

X major axis of inertia, the y axis is the intermediate
one, and the z axis is the minor axis of inertia.

/ m It can be shown that if a rigid body rotates around
/ the major or the minor axes, these rotations are stable
X [MAJOR (they are actually neutrally stable: when the rotation
is disturbed, the perturbation does not increase).
m However if the rotation is around the intermediate axis, this
rotation is unstable (an initial perturbation would increase and
the instantaneous axis of rotation would get away from the
intermediate axis).
m These results change in the presence of dissipation of energy
(which always exists in real life): The minor axis is unstable if &
there is dissipation of energy (Major Axis Rule). o/14
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Sputnik vs. Explorer |

m Sputnik was launched in 1957

m T he satellite was stabilized by rotation
around its major axis.

m Explorer | was launched in 1958,
“stabilized” by rotation around
its minor axis.

m NASA engineers were not conscious of
this fact, neither of the major axis rule
(which cannot be deduced from a rigid
body model). "

Basic concepts

Introduction to Attitude Dynamics S e e (]

Sputnik vs. Explorer |

m Stabilization around the minor axis
(red) did not work.

m Telstar | (the first

communications satellite) was
m In a few hours Explorer 1 started to launched in 1962.

spin around its major axis (green) with
a quite chaotic movement, making
communication with Earth difficult.

m |t was stabilized by rotation
around its major axis,
spinning at 200 RPM. "
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Major Axis Rule: Exceptions

m The gyroscopic effect induced
by the rotations considerably
reduces errors due to
misalignment between the real
and ideal axis of thrust.

m After ejecting the final stage,
this rotation is typically
stopped, for example with a

characteristic time of the instability is long enough so that the
slow (hours). dynamics transform the rotation
m Stabilization is typically achieved by to a major axis spin.

rotation around the minor axis in the g Example: Mars Odissey.
launch vehicles' later stages, before
firing these stages.

@
|
S
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Effect of a wheel in rotational dynamics

m A wheel, flywheel or rotor placed inside or
outside the vehicle, and which is in rotation,
produces a stabilization effect due to the
gyroscopic effect it provides to the ensemble.

m In addition, the intermediate axis, or even
the minor axis in presence of dissipation of
energy, can be stabilized with a wheel.

Platform

m Moreover, rotations (maneuvers) can be performed as follows:
if the wheel is accelerated in one direction, in the absence of
(significant) external moments, the vehicle would rotate in the
opposite direction due to the fact that the total angular
momentum cannot change.

m The most extreme example of this principle is a CMG (control
moment gyroscope); it consists of a wheel with high inertia i
and large fixed velocity but with moving axes. 10 /14
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Examples of Spacecraft with flywheels

m DSP (Defense Support
Program) satellites are part of
the USA early warning system.
They have infrared sensors.

m Navstar satellite (GPS).

m 4 flywheels spinning at several
thousands of RPM.

m Auxiliary system: RCS (hydrazine).

m Stabilized by rotation with a
flywheel.

@
u
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Gravity gradient (G?)

m The non spherical shape and mass
distribution of a spacecraft produces the
so-called gravitational torque, while it travels
in its orbit, since F = um/rz.

m It can be seen as a “restorative force” which
makes the spacecraft rotate as a pendulum,
around its equilibrium position.

m “G?’ can be used for stabilization: however, it
barely provides stability in yaw.
m The Moon is “stabilized” by G2.

m The Polar BEAR satellite, stabilized by gravity,
inverted its equilibrium position.
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Three-axis stabilized systems

m Stellites with an ADCS system that totally controls their
attitude are known as three-axis stabilized satellites.

m For example, the Hubble telescope’s attitude
control system is one of the most accurate
systems ever built by man.

m The principal telescope has to be able of
maintaining its position respect to a target with
an accuracy of 0.007 arc seconds (a human hair
width seen from a distance of 1.5 km).

m A golfer with that accuracy (and the required strength) would
be able to achieve a “hole in one” in a golf course in Malaga
executing the exit from Moscow, 19 out of 20 times!

m The Hubble performs its three-axis attitude control using
flywheels.

fme
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Agile satellites

m Earth observation satellites have considerable
attitude control requirements.

m The so-called “agile satellites” are prepared to
obtain multiple images or even 3D images
(taken twice from different angles).

m For example, the Pleiades constellation (2
CNES—French space agency—satellites) has
the capacity to obtain images with a resolution
< 1 m. from any point of the Earth!

Instrument

m |n order to take advantage of the optical
b Craatcs o capabilities, a large accuracy in the attitude
| st Tracker (9 control /determination is required, but also
A speed in the maneuvers; this is achieved with
°°m'°'M°memGw°s il CMG (control moment gyros), star trackers and

Spp—— FOG (fiber optic gyros) of high resolution. 2.
14 /14
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Spacecraft Attitude

m The attitude of a Spacecraft is its orientation with respect to

a given reference frame (typically, inertial or orbit axes).
Under the hypothesis of the spacecraft being a rigid body, it is
enough to know the orientation of the body axes (i.e., a
reference frame fixed to the spacecraft). Thus one needs to
study the orientation of a reference frame w.r.t. another.

The set of orientations between two frames is denoted as

SO(3): the special orthogonal group of dimension 3.
Aircraft classically use Euler angles (yaw, pitch, roll). For
spacecraft there are several alternatives (also applicable to
aircraft), with their corresponding advantages and

disadvantages:
B Director Cosine Matrix (DCM)
Euler Angles (12 possible sets)
Euler's Angle and Axis (a.k.a. Eigenaxis)
Rotation vector
Quaternions
Rodrigues parameters (a.k.a. Gibbs' vector)
Modified Rodrigues parameters 2/30
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Representations: Main features

Each representation has advantages and disadvantages, as will
be seen.
Each representation is defined by n parameters.

m If n = 3 the representation is minimal (since there are 3
degrees of freedom). However, minimal representations always
have singularities.

m If n > 3 then there will be n — 3 constraints for the parameters.
For a given representation, it might happen that two different
values of the parameters represent the same physical attitude.
Then, it is said that the representation has ambiguities. The
set of parameters that needs to be eliminated to avoid
ambiguities is called the “shadow set”.

In this lesson we study:

m How to switch between different representations
m How to compose attitudes for each representation when there

are more than 2 reference frames \—=—\
3/30
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Representations: Main features
Another interesting feature is the capacity to generate smooth
“paths” of attitude, this is, a continuous set of rotations to
get from an initial attitude to a final attitude.
One can talk about passive and active interpretations between
reference frames.
In the passive representation (a.k.a. “alias”) one transform
the reference frames (i.e. their basis vectors). Then, vectors
also transform since the reference frame change. However,
they do so in the opposite way. For instance, if the x-y axes
rotate 45° (along the z axis), a vector would rotate 45° in the
opposite direction (along the -z axis). This is the preferred
interpretation. Plot it!
The active interpretation (a.k.a. “alibi”) looks at the
transformation of vectors (therefore reference frames
transform in the opposite way). L}
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Director Cosine Matrix (DCM) |

m Let S and S’ be reference frames, respectively, with unitary
basis vectors (&, €, &) and (&, €/, €). The orientation
(attitude) of S’ w.r.t. S is totally determined by the change of
basis matrix CSS/. This matrix allows, given any generic vector
V expressed in the basis of S as V°, to change its basis as
follows: v°' = 5/\75. Denote:

¢-[a 5 o]
31 €32 €33

m Note: e_f/ = CS/E';(S = CSI[]. 0 O]T = [C11 (3] C31]T.

m [ herefore:

&6 = ()€ =[100][c1y co1 1] = .

m In addition:

1 = &y -8&, c31=28 &
C12 = gx’ 6_’3/ Cro = é}/ €y C32 = gz/ . é;/
. oL . @
a3 = &y &, 3=¢, &, 33=8 & 0
4 —
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Director Cosine Matrix (DCM) I

m Thus:
g [ & & &
G = &y ix A
€, - & €, - & €, - &
m By a similar reasoning:
g, & &,-& &, &
X Y z /
C_g, = & & &1-8& &/ -§ = (C_g )T
& & &8 &-&

m And since C2 = (CS/)_l, we get that CSS, is orthogonal,
this is: (C2')™* = (C2')". The name “Director Cosine
Matrix" is also justified since the dot product of unitary
vectors is the cosine of the angle they form.

m Another property is that det(CZ) = 1. This is due to the
fact that 1 = det(Id) = det((C2)(C2)™1) =
det((C2)(CE)T) = (det(CS))?. Therefore
det(C2) = £1. The sign + corresponds to both Sand S’ ¢

being right-handed reference frames, which are the ones =
used in practice.
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Director Cosine Matrix (DCM) Il

m This attitude representation has 9 parameters. These are
dependent from each other, this is, the coefficients of the C
matrix cannot be arbitrary (the matrix has to be orthogonal
and with determinant 1). In particular, one must have 6
independent constraints which determine that the matrix is
orthogonal.

m Composition: assume that the attitude of S w.r.t 57 is given
by Cgf and the attitude of S3 w.r.t S, is given by CSS;‘. Then
it it easy to see that the attitude of S3 w.r.t. S; can be found
by applying the succesive transformations, this is,

C5513 = C5523 Cgf Therefore attitude “composition” is given by
a simple matrix product (note that the order matters:
non-commutativity of rotations).
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Euler angles |

m In general attitude can be mathematically described by three
rotations in the main axes, where any axis can be selected for
the first, second and third rotation with the only rule that one
cannot repeat a consecutive axis (i.e. 1st and 2nd, and 2nd
and 3rd must be different).

m As an example, the classical aircraft rotation sequence is:

n2ys-% 5 % BFS
o T s S

m There exists other options, more suited to spacecraft:

ns 25 s n-t 582 BFS
x" yS 25/ z" x5 z5

m There are 12 possible sequences of Euler angles to represent
the attititude. This is a minimal representation (3 angles).

m One can obtain the DCM from Euler angles by multiplying
elementary rotation matrices. For instance

CR(.0.90) = C2(9)C3 () CR (v)-

fme



Director Cosine Matrix
Spacecraft Attitude. Representation methods. Euler Angles
Euler's angle and axis. Quaternions. Other representations.

Euler angles Il

m In the figure, the typical aircraft Euler angles
are used w.r.t. orbit axes.

v

m First a rotation around the axis labelled as
3 (yellow): yaw.

m Next, a rotation about the resulting axis 2:
pitch

m Finally, a rotation about the resulting axis
3: roll

m Notice that a rotation affects the position of
the axes for the next rotations.

m This sequence is denoted as (3,2,1). The
other sequences of Euler angles contained in

m Other possible
sequences: (1,2,1),

the previous slide are, respectively, (1,2,3) (1,3.1), (1,3,2)
and (3,1,3). (2,1,2), (2,1,3),
m One can choose a sequence depending on (2,3,1), (2,3,2), o
the angles which are of interest for a given (3,1,2), (3,2,3). S
9/30
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Euler angles Il

m For the sequence (3,2,1) with angles denoted as (1,0, ¢), one

has:
cOcy cOsvy —s6
C: = —cps) + spsbcy cpcy + spsfsy spch
spsy + cpsbcy —spcy + cpsfsyp  cpch

m Notice that (180° + v, 180° — 6, 180° + ) defines the
same attitude that (1, 0, ¢). Therefore typically one limits
6 € [—90°,90°] (the angles that are excluded from these
values constitute the shadow set).

m Given the DCM, to obtain the Euler angles, one can
derive the following formulas:
@ = — arcsin ¢13.
From cos ) = ¢11/ cos @, siny = c1p/ cosf, obtain 1.
From sin ¢ = c3/ cosf, cos = ¢33/ cosf, obtain .
m For other sequences, one can get similar relations from
the explicit expression of the DCM. -

10/30
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Euler angles IV

m Main advantage: physically meaningful.
m One has, however, to be careful when composing attitude.
m Suppose the attitude of S, w.r.t. S; is given by (1,601, 1)
and the attitude of S3 w.r.t. S, is given by (12,02, ¢2).
Denote as (3, 03, p3) the attitude of S3 w.r.t. S1. In general
VY3 # Y1+ 2, 03 # 01+ 02, 03 # o1+ po!!
m The best way to obtain (13,03, ¢3) is to compute them from
Cs} = C52 (Y2, 02, 02) C57 (Y1, 01, 1) This is, going to a
DCM representation, composing, and going back to Euler
angles.
m This shows that it might be complex to work with Euler
angles.
m Main disadvantage: singularities (as will be seen in Lesson 4).
|
11/30
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Euler's angle and axis |
m Euler’'s Rotation Theorem: “the most general movement of a
solid with a fixed point is a single rotation around a unique
axis.”
m Note: We are considering a rotation at a given time (a
“snapshot”), not a rotation that is changing as time evolves
(that is the subject of Lesson 4).
m Let us call a unit vector in the direction of that axis (Euler's
Axis) as €s/s/, and the magnitude of the rotation (Euler's
Angle) as 6.
m Thus, ||€/s/|| =1 and if we write e?;s' =[ex ey ] it
follows that e2 + e}% +e2=1.
m A useful formalism is the following. Given a vector
V = [vx vy v;]T define the operator x acting on vV (denoted
v*) as follows:
vX = \2 _gk :ﬁ; \EL
—vy Vx 0

12/30
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Euler's angle and axis Il

m The operation v* helps to quickly compute the cross product
v x w, for any vector w, in a reference frame S:

(Vv x w)® = (V)" w°.

m Thus, if the attitude using Euler’'s angle and axis is given by
(es o, 0), how to go from there to the DCM and the other
way around? The X operator helps.

m One has

, X
C2' = cosfId + (1 — cos@)es/s,(es/s,)T —sind (é’_g/s,>
This is known as the Euler-Rodrigues formula and it is

mathematically proven later.
m On the other hand, C2’, and computing Tr(Cgl) and

(C2)T — CZ', one gets:
Tr(CS) -1
2

(#1s)" = zang (€)= F) o

cosf) =

He
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Euler's angle and axis Il

m Another relationship between Euler's angle and axis and the

Director Cosine Matrix is given by the algebraic properties of
the DCM.

m Since the DCM is orthogonal, it can be shown that 1 is always
an eigenvalue of it. If C is the DCM, then the eigenvector
associated to the 1 is the Euler’s axis € since Ce = €.

m On the other hand, the other two eigenvalues of the DCM are
precisely e, e~/

m This is another way of computing Euler's angle and axis, by
evaluating the eigenvalues and eigenvectors of the DCM.

fme
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Euler's angle and axis IV

m Therefore, in this representation, one describes the attitude
with four parameters: three componentes of an unit vector
and an angle. These have a clear physical meaning.

. . . -G/
m Notice that the attitude given by (es/s,, ) and by

(—8?;5,, 360° — 0) is exactly the same. To avoid this
ambiguity, one can constraint 6 to [0, 180°).

m The “opposite” attitude (the one from S w.r.t. S’) is given by
(—5:2,/5,0). Notice also that eg,/s = eg,//s.

m Composition: if the attitude of S w.r.t. S; is given by
(5512/52, 61) and the attitude of S3 w.r.t. S, is given by

_’53 . —»53 .
(&5;/5,02). then, denoting as (&5, 03) the attitude of S3
w.r.t. 51, one obtains:

cos 03 = — cos 61 cos 05 + sin 67 sin 92(651/52 . 5*52/53)

S 1
e 3 _
S1/53

<sin 61 cos 92551/52 + cos 07 sin 92552/53 + sin 07 sin 92(5‘51/52 X 552/53))

fme
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Rotation vector

m A minimal attitude representation can be obtained by
combining Euler's axis and angle in a single vector as follows:
0 = 0¢é.

m This representation can be useful as it physically represents
the angular speed one would need to maintain constant from
a second for one reference frame respect to another, that start
being the same, to obtain the attitude given by (€, 0).

m On the other hand for large rotations it is not an adequate
rotation. Note that a rotation of 0° and 360° are physically
the same but the first is § = 0 and the second is not
univocally defined.

m Thus, the representation is reserved for theoretical analysis of
for small angles (or to determine the angular velocity
necessary to perform a fixed rotation).

fme
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Quaternions

m Quaternions were first described by Hamilton (19th century),
who considered them his greatest creation; he thought they
were going to be used as Physics “universal language”.
However, they were soon substituted by vectors (Gibbs) and
matrices (Cayley).

m Remember a complex number z can be thought of as a “ 2-D
vector”, which can be written in terms of its components as
z = x + iy. Complex number of unity modulus can be used to
represent a 2-D rotation, since if |z| = 1, one can write
z =¢% and it is well-known multiplying by this number
rotates the phase by an angle 6.

m Quaternions extend complex number to “4 dimensions”. A
quaternion g can be written as: q = qo + iq1 + jg» + kgs.
m qo is the scalar part and § = [q1 g2 g3]" the ‘“vector part” of

n
q. -
17/30
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Quaternion Algebra |

m To better understand Quaternions it's important to know their
algebraic properties, this is, how to operate with Quaternions.

m Sum: Component-wise, i.e., given g = qo + ig1 + jg2 + kg3
and q' = q( + iqy + Jjg5 + kg5, one has that
q"=q+q =q{ +iq{ +jg5 + kqj is given by the obvious
formulae:
9 =¢q0+d0 g1 =q1+ a1, G5 = G2+ G, 93 = g3 + .
m Product: denote by %, again, component-wise, knowing the
following rules of multiplication:
ixi=—=1,ixj=k, ixk=—j, jxi=—k, jxj=-—1,
Jjxk=1i kxi=j, kxj=—i kxk=-1.
m Hamilton's formula follows: i xj x k = —1.

m Notice that g x ¢’ # ¢’ * g: Quaternion multiplication is NOT
commutative! -

18/30
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Quaternions: Plaque on Broom Bridge (Dublin)

H%ﬂ"‘ 23 1“‘(‘8 w1 '_.':Q» b
on Hf‘& 16t oOf ﬂ tober 1843
Sir William R Rowan Hamﬂ*ﬂ n

[inaflash of genius d

| iscovered
' t.he fundaﬁﬁ,nn formmula for |\
qu-ater/n‘ic “'"L} *‘p”car
| % 7~j-~;-mz
b &cut it On 2 stone of ‘hiSbT\dO’r -
= ol e " & \ﬁ

@
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Quaternion Algebra Il
m Matrix form of the product: It is possible to write the product
q" = g * g in matrix form as follows:
a0 % —q —9 —a qo
/! / / / /
a1 _ | 99 9 —493 A4 q1
/! - / / / /
q2 4 g3 d I q2
a3 B —% 9 G a3

m “vector’ form of the product: g = q4q0 — G’ G,
§' =qq +q,G+q xq.

m Conjugate: As for complex numbers, given
q = qo + iq1 + jgo + kg3 one defines the conjugate of g as
q* = qo — iq1 — jq2 — kgs.

m Modulus: The definition of the modulus of
g=qo+iq+jg+kaszis |q?=qgxq* =qi+a?+q5+q5.
Property: |q*q'| = |ql|q’.

m Division: One defines division using the conjugate: -

qd/a=4d/qxq"/q" = (d' *q")/|ql*. 2 /30
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Attitude representation using Quaternions |

Given the attitude represented by Euler's axis and angle, €
and 6, one can “codify” that attitude in terms of Quaternions
as follows: qo = cos /2, g =sinf/2¢.

Notice therefore that if g represents an attitude, it follows
that |g| = 1 (and vice-versal).

Remember the x operator and apply it to the quaternion g*:
0 —

SR
—q2 q1 0

To go from DCM C to Quaternions, use:qy = ¥ 1+2TT(C) y
q =4 (CT=C).

4qo
To go from Quaternions to DCM use Euler-Rodrigues
formula for Quaternions:
C=(—q"q)1d+24q" — 2q03".

One can transform a vector v without need of the DCM

fme
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Attitude representation using Quaternions ||

Euler-Rodrigues formula in matrix form:

@+al—a3— a3 22(q1t722 + q20q3) ) 2(q193 — 9092)
C(q) = 2(q192 — 9093) 9 — 91 +9 — a3 22((12%3 + ng1) ,
2(q193 + q092) 2(q293 — qoq1) 9 — 91 — @ + a3

Quaternions are an attitude representation that requires 4
parameters, with the additional constraint |g| = 1.
Ambiguities: g and —q represent the same attitude, since
if g corresponds to (€, 6), then —q corresponds to (—¢€,
360 — ). Prove it!

Disadvantage: no physical sense unless you have some
experience using them.

Notice: To convert from DCM to Quaternions and back

no trig formulas are required, increasing the precission.
If gs/s represents the attitude of S’ w.r.t. Sy gsrs:
represents the attitude of S” w.r.t. S', then gsrs, the
attitude of S” w.r.t. S, can be computed

dsrs = Qs's x qsns (notice that the product is in the -
other direction, comparing with the DCM). 20

He
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Computing Quaternions from Euler angles

m For the classical (3,2,1) sequence, notice that
m The quaternion corresponding to the Euler angles (1,0, 0) is

gy = cost/2 + ksiny /2.
m The quaternion corresponding to the Euler angles (0,6, 0) is

Gy = cos /2 + jsinf/2.
m The quaternion corresponding to the Euler angles (0,0, ) is
g, = cosp/2 4+ isingp/2.
m Thus, given the Euler angles (¢, 0, ¢) one obtains a
corresponding quaternion using the composition rule as
q = qy * qg * qe-
m Explicitly doing the product one gets

g = (cosi/2cosf/2cosp/2+ siny/2sinf/2siny/2)
+i(cost /2 cosB/2sinp/2 —sint/2sin6/2cosp/2)
+j (cosp/2sin /2 cos /2 + sint) /2 cos B /2sin ¢ /2)
+k (siny/2cosf/2cosp/2 — costp/2sinf/2sinp/2). &
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Quaternions: a word of caution

m Careful: some authors (STK as well) write g4 instead of gg so
the scalar part is the last component of the quaternion.
m Some authors define the quaternion product in an opposite

way, so | x j = —k, etc. The consequence of this is that many
formulas change:

m The quaternion composition rule now is as for the matrices
(from right to left).
m The formula for vector transformation becomes

0 = * 0 * g

7B | T dB/A 7A qB/A

m Also, if one wants to use our definition of quaternions but to
rotate a vector (instead of changing its reference frame, this is,

o . 0 0 .
to use the active mterpretatlon) then: 7 =qg* 7 *xq

where V' is the vector V rotated by an axis and angle defined
by g, which is the formula one may find over the internet. i

=
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Quaternions: shortest path and interpolation

m Given two quaternions qg and g representing two different
attitudes, can one construct a ‘interpolation path,”
continuous, q(s) such that g(0) = qo and g(1) = ¢17

m The way to do it is to first find g, representing the attitude
between qo and g; (the rotation quaternion):

g = % * q1 = qpq1. From this quaternion extract Euler’s
cosf/2

sin 9/25] '

m Now the solution of the problem is g(s) which is the product
of gp and another quaternion coming from Euler’s axis € and
angle s6, so that when s = 0 it is the unity quaternion (and
the product is qg) and when s = 1 it is g» (and the product is

q1):

angle and axis ( 6 and €):qo = [

)= a0+ | s |

fme
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Rodrigues Parameters |

m Atittude representation using Rodrigues Parameters (RP, also
called Gibbs vector) can be easily obtained from the
quaternion as g = q%, obviously this is only valid if gop > 0
(i.e.0 < 180°) because otherwise one gets a singularity. To
recover the quaternion from g:

HEH2 _ HJH2 . 1- qg
- T 2 - 2
0 dp
_ +1 )
Thus qo = TG And therefore:

+1 [ 1 ]
q= —F——— | =
V1+gl* L 8

m In terms of Euler's axis and angle, & = €'tan 5.

>

fme
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Rodrigues Parameters ||

m The relationship with the DCM is as follows:

1B = E 1y ara) ! = (1052
1+ gl

On the other hand, since qg = V1I+TH(C) and

2
X

q —4q0 (CT C),onegets:

g 1 T CT-C
= — C'—-C)=————=
¢ do 4q(J ( ) 1+ Tr(C)

Composition follows a simple rule.If gs/s represents the

attitude of S’ w.r.t. S and gsrs/ represents the attitude of S”

w.r.t. S’, then gsr g, the attitude of S” w.r.t. S, is computed

as: . - ~ ~

8s"s! + 85's — 85151 X 85/
1—gs's-8srs

gsrs =

fme
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Modified Rodrigues Parameters

m The representation using Modified Rodrigues Parameters

(MRP) is quite recent (1962) but popular in control
applications. Similarly to RP, one can get it from the

quaternion, by defining p = —q To recover the quaternion
from the MRP:

H—»H2 ||6||2 o 1_q(2) :1_q0
(14+4q0)> (1+q0)? 1+qo

w121

Then qo = SN FTER Therefore:
———
1+ |12 2p
m In terms of Euler’s axis and angle, p = €tan %. e
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Modified Rodrigues Parameters Il
m The relationship of MRP with the DCM is
8575 — 4(1 — ||6]12)5"

C =1d+ eI = [(1d - p)1d + 5*) 1)
m Since g and —q represent the same attitude, then p = T‘qu
and p' = 1:—;70 also represent the same attitude. How we can
relate both?
2 1—qo . 1
1P = 150 = 7T

m Thus p and ﬁ represent the same attitude. Limiting

|P]| < 1 we avoid the ambiguity (notice however that there

are some other ambiguities if ||p]| = 1).

m Composition is complex compared to RPs. If ps/s represents
the attitude of S" w.r.t. S and psr s/ represents the attitude of
S" w.r.t. S, then psrg, the attitude of S” w.r.t. S, is:

o — (L= 1BsrsI®)Bsrs: + (1= ||Bss/[*)Bsrs — 2Psms: x Prs
1+ ||55'5||2||ﬁ5”5’H2 - 255/5 . ,55//5/ 29 /30
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The error quaternion

m To consider errors or to linealize any (nonlinear) equation
containing Quaternions around a (reference) value g, the
classical “aditive” formulation g = g + dq does not work well,
because even if G and dg have unit modulus, the sum of them
may not be unitary.

m |t is more convenient to use a “multiplicative” formulation
where g = g x dq, anddq is known as the error quaternion

which should be close to the unity quaternion g =[1000]".
m 0qg has 4 components but, obviously, only 3 d.o.f.; these can
be codified in a vector & “small” (in fact equivalent to 2g):

(Chve il

m Notice that dq(a) has unity modulus, as expected. If one
finally needs to linealize, one gets:

6q(a) ~ l 3}2 ] -
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Attitude determination

m Attitude determination is a process that estimates the present
attitude by using sensors and applicable algorithms. It can be
thought of as a “static” process that gives the picture of what
the present attitude is.

m Attitude determination sensors, in general, determine a vector
v in the body axes, this is, V& (in fact they use “sensor axes”
but the transformation to body axes should be known and it is
implicitly applied). It is assumed that said vector is known in
some reference axes (inertial axes or orbit axes), denoted as
vN. As will be seen it is necessary to have two or more
measurements of this kind to be able to solve the problem.

m In Lesson 6 we see sensors that from measurements of angular
velocity & continuously determine the attitude (a more
dynamic process that is typically referred to as attitude
estimation). :

S



Attitude determination: algorithms TRIAD and Wahba's problem

Estimation from observations

m In general, consider we have n (2 or more) sensors that
determine a vector Vi, i = 1,...,n, in body axes, this is, V5.
The vector is assumed known in some reference axes (inertial
axes or orbit axes, with respect to which we want to study the
spacecraft attitude) and denoted in that frame as vV/V. Those
are unit vectors since in principle only directions matter.

m Thus we have n equation written as v C N and we need
to solve for CB

m To simplify write W, = \75 V; = HN , A= CB Thus, we have
n equations W, AV and need to solve for A.
m These vectors will contain some errors.

m If n = 2 there a simple method that can be applied known as
TRIAD. We'll see other more general methods for n > 2.

m Question: what conditions would the
measurements/references verify if they are exact??

fme

Attitude determination: algorithms TRIAD and Wahba's problem

TRIAD Method

m Start from two obse_r»vations_‘related_:co the references through
the DCM: Wi = AVq and W), = AV,

m Define the following vectors: 7 = V4, i = “2*Y2 and
~ |V1><V2|
= V1><Fé W1><W2
3= 22 Similarly: 51 = W1 S = =222 and
3 |Vixr| y: |Wax Wy’
53 = w—isﬂ It is rather obvious that one should have now:
1XS2

51 = An, $ = An, and 53 = Ar.

m Construct now the matrices M,er = [11 1> 13] and
Mops = [S1 S $3]. It holds that Myps = AM,er. In addition,
the columns of M,.r are orthonormal between them. Thus,

M,f is invertible (and orthogonal!). Therefore we can solve
for Aas A= M MT

ref *

m Notice that the method is not symmetric, as the measurement
labelled as 1 is given more importance. In practice, A will not
be the exact DCM matrix due to errors in the sensors. Thus, ®

one should use the “best” measurement as first.



Attitude determination: algorithms TRIAD and Wahba's problem

Wahba's Problem

m Consider now n measures satisfying W; = AV:. We pose the
problem as a least squares minimization problem.

m Define the function L(A) = %27:1 aj| W, — A\7,-|2, where a;
are the weights given to each measurement (verifying
> 7 1ai =1) and pose the mathematical objective of finding
A (orthogonal) such L(A) is minimized. In the literature this
is known as ”Wahba’s Problem”.

m Since operating

— — —

(Wi — AVi2 = (W — AV))T(W; — AV)) =2 — 2W,T AV,

-~

one has
n
LA =1-) aW AV, =1- g(A),
i=1

where g(A) = 327, a;W.T AV;. Minimizing L(A) is thus .
equivalente to maximizing g(A) (and notice g(A) < 1!). L

Attitude determination: algorithms TRIAD and Wahba's problem

Davenport’'s g method

m Writing A as a function of g by using Euler-Rodrigues
(A= (g3 — 3" q)I+233" —2q0G™) we reach

n n n
= aW(gg—q"q)Vi+2)  aWGq"Vi-2>  aW qog* Vi
— i=1 i=1

m Develop now each term trying to reach a bilineal form

g(q) = 9" Kq:
m Starting with the second term

223, T**Tv_zza, TW:VTGg=2§"BG=3g" (B+BT)q

where B =37, a,-W,-\/,-T.
m The first term can be written as

Y aWT(@—G"a)\Vi=(63—-d"a4)Y_ aW V; = qoqo—q" (o1)g
i=1 i=1
where 0 = Y7 | 3 VT/,T\7, = Tr(B) LR



Attitude determination: algorithms TRIAD and Wahba's problem

Davenport’'s g method

m Finally, the last term can be expressed as:

—2) " a W, qog* V; = 2 3 W qoV*§ =2q0Z" G = qoZ’ G+§" Zqo

where 2T =37 a; V_V,-T \7,-X, hence Z=—>""_, a; \7,.>< W
m One has (3%b)* = baT — b7, what can be shown from the
identity (& x b) x €. Observe then that

n n n
R DU AN SRV SR L
i=1 i=1 i=1

fme
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Davenport’'s g method
m Thus, the function g is expressed in terms of the quaternion as

g(q) = q"Kg

where the matrix K can be found from the coefficients of a

newly defined matrix in terms of weights, measurements and
references B = >, a,-W,-\/,-T, as follows

o = Tr(B),
S B+ BT,
¥ = BT -8B

being K a 4 X 4 matrix equal to

fme



Attitude determination: algorithms TRIAD and Wahba's problem

Davenport’'s g method

Thus, the problem is now reduced to finding g (attitude
quaternion, this is, a norm 1 vector of four components) such
that g(q) = q" Kq is maximized.

To solve a multivariable maximization problem with
constraints (g7 g = 1) one can use Lagrange's multipliers:

H=q Kg— Mg q—1)
Taking derivative w.r.t. g and setting it to zero:
g—’;:quK—quT:o —  Kg=M\g.
Thus A must be an eigenvalue of K and g the associated
eigenvector of modulus 1 (there are two, but of opposing
signs, thus representing the same attitude). To find which
eigenvalue, replace the solution in g(q):

g(q)=q"Kg=q " A\g= A

Therefore, the maximum attained at the critical point is equal
to the eigenvalue and the solution will be the eigenvector (of o
. . . |
modulus 1) associated to the maximum eigenvalue. -
9/24

Attitude determination: algorithms TRIAD and Wahba's problem

The QUEST method

Davenport's g method reduces the attitude determination
problem to an eigenvalue/eigenvector problem, however this
algebraic method might be problematic to solve on a satellite,
depending on computational resources available onboard.

In 1978 the QUEST (QUaternion ESTimator) method was
developed to avoid the computational burden.

The idea is to rewrite Kg = Aq in terms of the K matrix:

o zT o | _ | 9o
7 S—old || |~ g

Therefore two equations can be extracted.

0o +27G =N, GZ+SG—oG=\g

q

20 One can manipulate the

Remembering Gibb's vector g =
second equation reaching

Z4+[S—(c+N]g=0 a



Attitude determination: algorithms TRIAD and Wahba's problem

The QUEST Method

Then & = [(0 + \)I — S]7 ! Z (but we don't know ), the
maximum eigenvalue)

A first approximation is to take A ~ 1 (which would be the
value if the measurements were without error). Then
g=[1+o0)-5"'7

A better approximation is to find an explicit expression for the
maximum eigenvalue by finding the roots of the characteristic
equation of K, which is:

M —(a+b)XN —cA+(ab+co—d)=0

m Where the coefficients are
a = o — Tr[adj(S)],
b oc-2'Z
c det[S] + 2757,
d = 775%z L]
11/24
Errors in attitude determination ér?gi:fir:ezrt?rfgeogétt:rtri‘:?ri'n?tion methods
Errors in attitude determination
m Errors are, by definition, unknown. Since, if they were known,
they would not be errors anymore!
m However, it is important to characterize errors in some way.
m The science that deals with unknowns is statistics (and its
associated math field, probability).
m Engineers have to know about statistics, since it can be
applied to many fields. Here, we give a refresher for some
concepts necessary for estimating errors in attitude
determination.
m We will always use normal distributions.
m We go from sensor errors (typically given by their technical
specifications) to errors in attitude determination:
propagation of uncertainty. .
u
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A brief refresher of statistics
Errors in attitude determination Errors in attitude determination methods

1-D Continuous RandomVariables

m Let X € R be a random continuous variable.

m Remember that the cumulative distribution function (CDF)
F(x) is the probability that X < x, which is written as
F(x) = P(X < x).

m The CDF is computed from the probability density function
(PDF) f(x): F(x) = ffoo f(y)dy.

m One defines the operator “mathematical expectation” acting
over the function g(x) as E[g(X)] = [*_g(y)f(y)dy. ltisa
linear operator:

Elong1(X) + a2g2(X)] = ca E[g1(X)] + a2E[g2(X)]. Two
importan examples are:
m Mean: m(X) = E[X] = [*_yf(y)dy.
m Variance: V(X) = E[(X — m(X))?] = E[X?] — (E[X])?
(non-negative).
m The typical deviation o is the square root of the variance
o = 4/ V(X) to make it have the same units as the mean.

m Does it make sense for errors to have nonzero mean?

o
u
S

13 /24
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Normal (Gaussian) distribution |

m It is the most commonly used distribution in statistics. One
writes X ~ N(m, 0?) and its PDF is
X— 2
m Confidence intervals: if X ~ N(m, c?) then:
m 1-o interval: P(X € [m— o, m+ o]) = 68.3%.

m 2-0 interval: P(X € [m — 20, m+ 20]) = 95.45%.
m 3-0 interval: P(X € [m — 30, m+ 30]) = 99.74%.

0.9

n =02 ——
p=00=10

/\ n=0,02=50 —

08 I\ B=-20"=05

07 [\
06 |
05 /0

03 ,,““ \ | \
02 /‘ \/ \

m | i : i
01 / \
N\ -30 -20 -lo M lo 20 30

-5 -4 -3 -2 -1 0 1 2 3 4 5

00 01 02 03 04

fme
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Normal (Gaussian) distribution Il

m The central limit theorem shows that the sum of independent
random variables (with any kind of distribution), tends (in
average) to a normal distribution. Since large-scale errors
come from the sum and accumulation of many small-scale
errors (think for example about temperature fluctuations), this
justifies using normal distributions as a good model for errors.

m An important property of a normal distribution is that the
sum of independent normals is again normal, this is, if
X ~ N(my,02) and Y ~ N(my,07), and they are
independent, then Z = X + Y is distributed as
Z ~ N(my + my, 02 + 02).

m Therefore 0, = /02 + 02, this is, the typical deviation of the
sum of errors is the square root of the sum of squares of the
typical deviation of errors.

m This rule is known as Root-Sum-of-Squares (RSS) and it is of
high importance when dealing with accumulated errors.

fme
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A brief refresher of statistics
Errors in attitude determination Errors in attitude determination methods

Multivariate Continuous Random Variables

m Let X € R” be a multivariate continuous random variables.
m Each component of X follows a 1-D distribution (i.e. isa 1-D
random variable).
m Following the 1-D case, we now define a joint CDF that is
computed from a joint PDF f(x)
= Similarly E[g(X)] = f]R” )f(¥)dy. Important cases:
m Mean: mi(X) = E[X] fRnyf )dy.
m Covariance: Cov(X) = E[(X — m(X))(X — m(X))T]=Z. A
symmetric, non-negative definite matrix. The values of its
diagonal represent the variance the corresponding component

of X, whereas off-diagonal coefficients represent the
correlation between two components of X. One has

T = E[(XXT] - m(X)m(X)T.
m For instance for n = 3 and writing X = [X, Y, Z|:

o2 EIX — m)(Y — my)]  E[(X — m)(Z — ms)]
Y= | ElX —m)(Y —m,)] o2 E[(Y — my)(Z — m;)]
EI(X — m)(Z = mz)]  EL(Y — my)(Z — ms)] o2

z

fme
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Multivariate normal distribution |
m One writes X ~ N,(ri, X) and its PDF is

f(X) = WEXp (—i(x—m) T (X — m)).

m Confidence intervals become regions in R", defined by
P(X € Q) = Pq.

m The shape of these regions is a multidimensional ellipsoid
described by (X — m) T ~}(X — i) = d?, where d depends on
Pq. The size of the eigenvalues of ¥ determines the size of
the ellipsoid, whereas the direction of the ellipsoid axes is
given by the eigenvectors of ..

Variable 3

fme
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Multivariate normal distribution 1l

m A classical example from aerial navigation or orbital
mechanics, one can describe an aircraft/spacecraft position in
some axes as 67 = [0x dy 6z]", as a multivariate normal with
n = 3, with mean zero (centered in the expected position of
the vehicle) and covariance matrix

o2 0 0

Y = 0 o2 0
Y 2

0 0 o

z

m Then one can visualize the movement of the vehicle with the
movement of the whole ellipsoid, representing a region (tube)
where the vehicle can be found with some degree of certainty.

m Property: If X ~ Ny(ix, Z,) and Y ~ N,(ri,, E,) and they
are independent, then if Z=X + Y it follows that
Z ~ Np(iy + iy, T + Z,).

m Similarly if AX + b where A and b are non-random (known) it
follows that AX + b ~ N,(Ari, 4+ b, AL, AT). m

18 /24
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Errors in attitude determination

m How can one characterize attitude errors?

m It will depend on the chosen attitude representation.

m For instance if one chooses quaternions, then one could use
the quaternion error, parameterized dq(a) and give a
multivariate distribution for 3. Typically with zero mean and
some covariance. Then the approximate attitude g is related
to the real attitude g as in Lesson 2: § = g x g where

59(3) = —— ;

Vi ]

m If one uses the DCM, it is required to find a way to
represent some kind of “DCM error” .

m It does not make sense to use a 9-dimensional distribution
function to characterize the error of each component since
attitude does have 3 degrees of freedom, as we know.

m Since errors are (or should be) small, we next characterize <
DMC errors with an approximation for “small” DMC. -
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DCM for small angles |

m Let A and B be two reference frames related as follows

oy  do, ~ df
A=>55 —3S5—>B

XA ysl 252

where we assume that d6f; are small angles, so we can make
the approximations cos df; ~ 1 and sin df; ~ db;.
m Writting the DCMs taking into account the approximations:
1 0 0 1 0 —do 1 do 0
cr=1| o 1 do; |, c2=| o 1 0 ,CE = | —dos Coo |
0 —do; 1 1 doy, 0 1 2 0 0 1

m Then, since C; = CJ C5512 C3', and neglecting all double
products of angles (i.e. df;df; ~ 0), one gets:

1 dos  —dbs 0 —d6;  db, -
cB=| —dos 1 do; | =Id— | dbs 0 —d6; | =1d — d§’*,
do,  —do, 1 —d6,  db; 0 4
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DCM for small angles Il

m In the previous slides the definition df = [d6; df» df3]7 was
made, and the matrix

0 —df; db,
do* = | dos 0 —db |,
—do, db, 0

is the result of the operator x as was defined in Lesson 2.

m Notice that under these hypothesis (small angles) it does not
matter the order of rotations and the angles add up, however
not all sets of Euler angles could be used since no axes can be

repeated (meaning: 1-2-3 o 3-2-1 or any similar set works, but
1-2-1 would not).

m Exercise: work out the (very simple!) relationship between the
small angles vector and the vector 3 used in quaternion errors
by using Euler’s axis and angle. Ll
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Error of a DCM

m To model errors for a DCM we use the “small angles vector”
just defined, which will be randomly distributed.

m Denote CZ the matrix with errors (or actually CE = CP),
where:

Spx ~ O Sdr A
N— B ¢>51 ¢y>52 4 B

Xb ysl 252
= Then C§ = CECE and thus Cf = CECE, and we define
5CE=CE-CE = CéBCﬁ —CE = (CéB —1d)CE.
m Assuming 0¢ = [6¢x 06y 5¢,]T are small, one has
CE =1d —6¢* (and CE =1d + 6¢).
m Then the relationship between the “error matrix” 5C,’3 and 5$
is 0CB = (Id + 6¢* — Id)CE = 6¢* CE.And one has
CE = (1d +66*)CE.

fme
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Covariance matrix for TRIAD

m For TRIAD, one can model the error as a small angles vector

5¢ given by a multivariate normal with zero mean and
covariance Pyg. One can prove:

Py = o21d + (03 = ehmawy + of (W wo)maw,” + wowy"))

W1 X Wy
where o7 represents the angular error (given as typical
deviation) of the first measurement and o, the error of the
second measurement.

Notice, as expected, that the first measurement has more

influence on the final error.
If the measurements are orthogonal, then:

Pyp = oild + (05 — o)W W,
Imagine for instance if W; is the x axis, then this results in

P4 diagonal, with the (1,1) entry as O'% and the other
diagonal coefficients as 02: Can you interpret this?

fme
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Covariance matrix for g

Now & represents the attitude error (via dg(a)) and therefore
we model 3 as a multivariate distributed vector with zero
mean and covariance matrix P,.

In the q algorithm each measurement has an error represented
by its variance 0 The global error of q depends on the
chosen weights and one can prove the following relationship

—1

n

T

Id — ZaiWiVVi
i=1

-1
n n

P, = [Id -3 a,-VT/,-VT/,T] [ afof [1a - VT/,VT/,T]}
i=1

i=1

A good rule of thumb for a, is make it proportional to the
inverse of the variances 0 , however since the a;'s add up to

-1
1, one chooses -, = SO P, = [ R C D D ;;W,-W/,-T] :
J 1

1
1;
J

Note that {Id - >0 a,-W,-W,ﬂ should be invertible.

Exercise: consider the particular case analyzed for TRIAD

4
with equal weights and compare. -
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DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

Attitude Differential Kinematic Equations

m Remember that, when talking about displacements, the
differential kinematic equations (for short:kinematics) relate
the position and velocity vectors whereas the differential
dynamic equations (dynamics) relate the velocity and force
vectors.

m For attitude, the kinematics relate the chosen representation
of attitude (DCM, Euler angles, quaternions,...) with the
angular velocity & (normally, expressed in body axes).
Typically these equations are non-linear.

m In attitude estimation (which is a part of inertial navigation),
gyros measure ¢ and one uses kinematics (integrating the
equation) to compute attitude (Lesson 6).

m Thus, it is important to know the kinematics for the different
representations, to see the possible computational advantages

(hint: quaternions win). L
2/17



DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

DCM kinematics |

m Suppose we want to compute the attitude of a frame B w.r.t.
to A, using the DCM C2(t), knowing B is rotating w.r.t. A
at an angular velocity ﬁg/A.

B _CB
m By definition %CB = CA(HdéZ Cat) (if someone prefers

limits the reasoning is analogous)
m Fixing A, we can imagine that B is moving, so in fact
B = B(t) and, formally, we can write C§(t) = B(t)
m Using this reasoning,

CB(t+dt) = B(t+dt) CBB((:)+dt) CAB(t). Then:

A— B(t) — B(t + dt)

m During a time dft, the reference frame B has rotated w.r.t to
itself just a small angle; remembering Lesson 3:

—, X —,
Cg((:)+dt) =1Id — (d9’3> . where d6® is a small angles vector. a
3/17
DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions
DCM kinematics Il
cB(t+dt) ~B B
d B _ CR(t+d)—CP(t) _ Cpy A (t)—Ca (t)
= Then.mC = o an
(1d—(d6B) ™) CB(t)~ CB(t) (d9 )" B
dt B} i Calt)
. (d68)" . .
m [ he matrix % IS written
Sp\ X do do
(deB) 0 -~ d% 0 —w3 w
dt dﬁZ S @ | T 0 e,
av2 1 I
% @ 0 w2 w1 O
where wg/A [wi wa w3] " since dOB is the angle the body
rotates in a dt seen from its own frame, w.r.t. reference
system A: by definition this is the angular velocity. Then
2 0 —Ww3 w2
~B
(wB/A) = w3 0 —wi |,
—Ww?2 w1 0 :

X
= Thus: $C8 = CE=—(aF,) C& o/



DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

DCM kinematics Il

. X
m A variation: transposing both sides of CE = — (J}E/A> CE

. X
we reach Cé. = Cé (c’u’g/A)

m DCM kinematics: matrix differential equation, solved
component-wise (system of 9 coupled scalar ODEs).

m Main difficulty in numerical resolution: conservation of
orthogonality. Notice that, since | = (C2)(C§)7, taking
derivative:

(D] (HT T
= (@g/A)X CA(CR)T + CACh (‘Dg/A>X
= - (QE/A> ’ + <QE/A)X =0

m Thus kinematics preserve orthogonality. But numerical <
schemes will not.

5/17
DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions
DCM kinematics IV
m There exists algorithms to find, given a certain matrix, another
orthogonal matrix “closest” to the starting one in some sense.
m For instance, given M, one can compute
Q — M(MTM)—1/2
which is orthogonal (and equal to M if it was orthogonal to
start with).
m Problem: computing the square root of a matrix is not simple.
An iterative method that avoids the computation is the
following.
m Start: Qo = M, iterate Qxi1 = 2M(Qk_1M +MTQ)™L, and
it's easy to see that this converges to Q when k — oo, with
the condition that M is close to some orthogonal matrix (and
therefore invertible).
m If M is very close to being orthogonal to start with, o
|

convergence is quite fast! -



DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

Euler angles kinematics |

m Example: aircraft set of Euler angles (yaw,pitch,roll). Start
from the definition:

m Angular velocity can be decomposed between frames as
Wp/n = Wp/s + Wsr/s + Ws/p-
m Writing the equation in b: (Ijg/n = 552/5, + “_jg//s + a'}g/n
m On the other hand:
Sps =9 007, &3 ,s=[060]", @g/ [00 ],
m Then: cD’,’j/ = wb/s, + Cf,o"js,/s + C ws/ and since
CS = Cfg’, Cs ., we reach:
CL’/?/n = wb/S’ + Cg/WS//s +C2 CSI(Dg/n

L]
7/17
DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions
Euler angles kinematics I
m Developing:
O 1 0 0 0
wg I = O [+ 0 cp sp 0
0 0 —sp cp 0
1 0 0 cd 0 —s0O 0
+1 0 cp sp 0 1 0 0
0 —sp cp s¢ 0 «cf WY
% 0 —sﬁzﬂ_
= 0 | + | cpd |+ | spcty
| 0 —spb cpchy
1 0 —s0 o
= 0 cp spch 0
| 0 —sp  cpct Y °



DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

Euler angles kinematics Il|

6

What we actually need is an expression for the time
derivatives of angles as a function of @f/n = w1 wo w3] ",

therefore, inverting the matrix we reach

1

1 0 —s0 | | wm 1 | o ssp  sfep
=10 cp spch wr | =—= 1| 0 cpcld —spch
cl
0 —sp cpch w3 0 sy cy

Notice these are 3 non-linear ODEs, with several trig
functions.

There is a singularity at § = 490°. In fact Euler angles
are not well defined for this attitude. This singularity is
the reason why Euler angles are frequently avoided in
inertial navigation (for aircraft or spacecraft).

All other sets of Euler angles also exhibit singularities;
there is no combination of angles free of them.

DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

Euler's axis and angle kinematics

Representation as Euler's axis and angle, namely (ef/n,ﬁ), has

the following kinematics:
For Euler's angle: 6 = (5g/n)Tc32/n

For Euler’s axis:

: 1 X 1
IV N g b b \T)\| b
€/n =5 [(eb/n) tono2 072 (Id €h/n(€b/n) )] @ /n

These are 4 ODEs, non-linear.

They exhibit a singularity at # = 0.

If & has a constant dire_ctiog equal to the initial axis €, then
kinematics simplify to € = 0 (this is, &(t) = €(0)) and

0 = ||&|| (important casel!).

In practice these are seldom used; we just apply them as an
intermediate step towards quaternion kinematics.

w1
%)
w3

fme

@
L
~—
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DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

Quaternion kinematics |

m Remember the attitude quaternion defined from Euler's angle
and axis:
Go = cosf/2, g = sin 0/25’/’3’/,7
m Taking derivative in the gg definition and substituting the
kinematics for 6, one gets
go = —3sinf/20 = —1 sin 9/2(eb/ )wa/n =—1qTab b/
m Taking derlvatlve now in the g definition:

-1 : :
q= 5 €os 9/25’,’)’/”0 + sin «9/255/,,

m Substituting Euler’'s axis and angle kinematics:
- 1

q = 5¢0s 0/2eb/n(eb/n)wa/n
+Lsing/2 (et )X P (1d - &n(eb))T) |
; i) T Gnep ynlCyn)") | Sy
1, b L}
- 5 [q + qOId} wb/n 11/17
Attitude Differential Kinematic Equations Eli!e\ﬂ angles

Quaternions

Quaternion kinematics |

m Quaternion kinematics in matrix form:

qo —q1 —q2 —Qq3

w
dla | _1]| @ -@¢ o .
dt | o 21 @G  qo —qi Y
Wz

a3 —q2 q1 do

where ﬁé’/n = [wx wy wo] .

m These are 4 bilinear ODEs, without singularities.

m Notice the absence of trig functions, which helps precision.

m These properties of quaternion kinematics are perhaps the
most important reasons why its use is wide among the
aerospace community to represent spacecraft (and aircraft!)
attitude. All computations can be done (internally) with
quaternions, and if necessary one can transform them to other
representations for visualization or other purposes, depending

on the application. SN
12 /17
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Quaternions

Quaternion kinematics Il|

m Remembering the definition of quaternion product as a
matrix, one can notice some similarities with the differential
kinematic equation. In fact, defining a “quaternion” g, with
zero scalar part and whose vector part is equal to the
components of the angular velocity, namely:

qw:[owxwywz]T

kinematics can be expressed very simply as

_ 1
qziq*qw

The only drawback of using quaternion kinematics is that
numerical errors can creep in and make the quaternion
modulus different from 1. However, unlike the DCM, making
the quaternions verify its constraint is easy; just normalizing
the quaternion (dividing by its modulus) we can make its

modulus stay at one. LN
13 /17
DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions
Other kinematics
m RP:
5 1 X | z==T
§=75 {IdJrg + 88 ]w
m MRP: i H2 y o
5 14||p [ p* +p"p } .
p= d+2———| @
1+ ||plf2
m Rotation vector:
5 1~ 1 ) S
=0+ -0xb+—-(1——|O0x (O xO©
WXt ( 2tan9/2> (6> &)
u

14 /17



DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

Slew maneuvers

m Given two different attitudes expressed as quaternions, gg and
g1 and some time interval T, can we construct a continuous
angular velocity ¢(t) such that g(t = 0) = qo and
q(t=T)=aq?

m The key to do it is, as in interpolation, to find the so-called
rotation quaternion g representing the attitude between qg
and g1: g = % * q1 = qpq1. From this quaternion extract

oo ) 61/2
Euler's angle 61 and axis € which verify g, = [ ef;? 6:}1//2 ]
this is, 01 = 2arccos(gxo) and € = sir%/z

m The solution angular speed @(t) goes in the direction of € and
represents the shortest rotation. Call its modulus w(t). Then
0(t) = [y w(T)dT and the attitude evolves as

_ [ cos(0(1)/2)
q(t) = qo * [ sin(0(t)/2)&
m Any w(t) such that fOT w(T)dT = 0y is a solution. 15/17

S

DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

Linearizing quaternion kinematics |

m Linearizing is crucial in many aerospace guidance and control
applications. Asume we have a reference angular speed &,
that generates a reference quaternion g according to
kinematics. If & = &, + &, where 0 is “small,” what is the
new resulting quaternion due to this small change?

m Use the error quaternion as g = g x dq, and let us determine
dq. Taking derivative:

A _ 1
q=Gq*0q+q*x0q9=-q*qu
m Using § = %c_]*qwr:
1_ _ 1_
Qq*qwr*5q+q*5q: Eq*éq*qw
m Left-multiplying by §* and solving for dq, one gets:

1 o

.1
0q = 70 % Gu — 5qu, * g L}



DCM
Attitude Differential Kinematic Equations Euler angles
Quaternions

Linearizing quaternion kinematics Il

m Express now & = &, + 0@ and remember the linearization of
dq as a function of the parameter J:

df 1] 1] 1], 0 1T o0
dt | a2 | 2| a/2 Gr+063 | 2] &

/ / — T =
S do d | dpdo —q ' g
m Remebering: * S| = . - |, one
g[i’] [q] [qod”+q6q+é”><q]
has:
i 1 N 1 —37 )2(&, + 0%) + &[] /2
dt | @2 | 72| @ + 06+ 3/2 x (&) + 63) — &y — &y x 3/2

m Since we are linearizing ||a]|||d|| =~ O because it is a double
product of small terms. Operating:

d 1 1 0
dt | 32| 7 2| 6G+3axd,
m Thisis: 3~ 00+ 3xa,. A quite simple expression. Thus the L}
reference angular velocity also influences a. 17/17
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RemitalE] ehes Preliminary definition from Mechanics

Euler's Equations

Spacecraft attitude dynamics

m Spacecraft attitude dynamics are given by the equations of
rotational dynamics. These describe the relation between
causes (torques exerted on the vehicle) and effects (angular
velocity). Solved together with kinematics.

m Main hypothesis: The vehicle is a rigid body (rigid-body
hypothesis). If there are flexible/mobile parts, the model
needs to be extended to include them. Thus we can define the
rotation of the body frame (fixed at the center of mass of the
body) w.r.t. the inertial frame, as in previous lessons.

Newtonian
Reference
Frame

fme



REEHee EhErT s Preliminary definition from Mechanics

Euler's Equations

Angular momentum and Torque |

Newtonian
Reference
Frame

m For each point of the body with mass dm, one has Rdm = dF.

Taking moment with respect to the center of mass B, we get

0 X Rdm = p X dF = dMg, and integrating over the volume
V, we get a relation involving the total moment of the forces
with respect to B (the total torque): [, p Rdm = Mg.

m Notice that these time-derivatives are considered w.r.t. the
inertial frame.

REEHEIE EhET S Preliminary definition from Mechanics

Euler's Equations

Angular momentum and Torque Il

Newtonian
Reference
Frame

m The absolute angular momentum with respect to B, FB, is
defined as: g = [y % Rdm.
Note g = [,/ x Rdm + [, 7 x Rdm.
m Since R = Rc + p, replacing it in the first term we get:
g :fvﬁx ﬁdm+fvﬁx R.dm + Mg
m The first term is zero. The second verifies
fvﬁx ﬁcdm = (% fvﬁdm) x R, =0.

m Therefore FB = /\7]3

n fme

fme



REEHee EhErT s Preliminary definition from Mechanics

Euler's Equations

Angular momentum and Inertia |

Newtonian
Reference
Frame

m The angular momentum FB verifies
Mg = [y 7% Rdm = fvﬁxﬁ dm—i—fvﬁxf)'dm— fvp"xﬁdm.

m Remember Coriolis’ equation (dtp) (dtp) + /N X P,
where N is an inertial frame and B the body axes. Then,
(%ﬁ)N = Wp/N X P.

m Therefore

rB = fVP X (WB/N x p)dm = ( fv pxdm) Wp/N
m Define the inertia tensor

7T =— fV p—’Xﬁde = fV [(pr_’)Id _ PP_’T} dm 5/59

fme

REEHEIE EhET S Preliminary definition from Mechanics

Euler's Equations

Angular momentum and Inertia Il

Newtonian
Reference
Frame

m Thus Tg =7 - Wpg/n- The explicit expression of the inertia

. Ju(p3 + p3)dm  — [\, p1padm — Jy p1p3dm
tensor is Z = | — [, pipadm [, (p2 + p3)dm ~ Iy p2p3om
— [y p1p3dm — [y papzdm [, (p} + p3)dm

m Since the matrix is symmetric: it is diagonalizable. Thus one
can find the principal axes where Z is diagonal:
L 0 O
I=10 kL O
0 0 &K
m The largest moment of inertia /; is about an axis which is
denoted as major axis; the smallest, about the minor axis.
The remaining one is about the intermediate axis.

@
u
~—
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REEHee EhErT s Preliminary definition from Mechanics

Euler's Equations

Angular momentum and Inertia Ill

m Assume we have a vehicle composed of n parts, each of them
with known mass M, center of mass r., and inertia tensor
Zx. Then one can find the inertial tensor of the spacecraft as

n
=% [Mk (chk\|21d _ Fckrjfk) +Ik}
k=1

m Note that i is the vector joining the center of mass of the k
part with the whole spacecraft center of mass.

m Spacecraft are formed by a number of structural elements so
this is a widely used formula. However, we will not need it in
general for our lessons.

o
LN
7/59
REEHEIE EhET S Preliminary definition from Mechanics
Euler's Equations
Kinetic energy
N
Newtonian
Reference
Frame
m Kinetic energy is defined as T =1 [,, - pdm.
. d — = —
m Using (Ep)N =W /N X p, we get
T=5 )0 (@n x p)dm = 30pn - [\, (7 p)dm =
1 — = . 1 — —
swg/n - Te=35Wp/N T Wg/n-
m In principal axes, if dg/ny = [w1 w2 ws] ", one gets:
wih
6= | wab
w3l .
w%ll —|—w§lg—|—w§I3 -

m Thus: T =

2 8/59



Fettalzl Shes Preliminary definition from Mechanics

Euler's Equations

Euler's Equations

m Start from = M. Since the time-derivative is in the inertial
frame, taking it in body axes we get:

dp _(dF - E_ N
(EF)N = (mr)s + &gy x T = M.
m Replacing the expression of angular momentum in terms of

—

the inertia tensor: (%7 - @e/N) g + PN X (T-Cgyn) =M

u Usmg the rigid-body hypothesis (d—I)B =0, we get:

t
7- wB/N —I-WB/NI wB/N =M.

m Developing in principal axes and writing M = [My My Ms]T
hwy + (B — h)wws = M

lhwy + (/1 — /3)(,01(,03 = M
lzws + (/2 — /1)(,02(,01 = M3

fme

Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-Free rotation

m Our first detalled study is of torque-free rotation, this is, when
torque is zero: M = 0. Under this assumption, the angular
momentum of the system is preserved.

m This does not ever happen in reality since there are always
some small perturbing torques (albeit they can be small).

m We will see some analytical solutions but the most interesting
results are those concerning the stability of the rotation; in
particular, we will find the major axis rule.

m We consider two cases: axisymmetric (two equal moments of
inertia: the spinning top) and asymmetric (the three moments
of inertia are different)

m The totally symmetric case (I = I, = I5) decouples Euler's
equations and can be trivially solved (the resulting angular
velocities are constant and independent from each other).

He

S
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

m Consider /1 = /2 = /, /3 75 l.
m Euler's equations now read:

lwi + (/3 — I)OL)2Q)3 =0
lwy + (/ — /3)&)1003 =
hws = 0

m First, we obtain w3 = Cst = n (spin rate of the spacecraft

about it symmetry axes). Define \ = %n, denoted as the

“relative spin rate”. The first two equations result in

wi—Awp = 0
wr+Aw; = 0
This is the ODE of a harmonic oscillator, whose solution is:
w1 = wi(0)cos At + wy(0)sin At
wp = wy(0)cos At —w1(0)sin At L]
11/59

Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

m It is easy to see that w? + w3 = Cst = w3,, the so-called

transverse angular velocity. Thus, |jw|| = {/w?, + n? = Cst

and its third component is also constant. Therfore, &J seen in
the body frame describes a cone about the body symmetry
axes, of angle v = arctan (%)

m On the other hand T = Cst in the inertial frame by
conservation of angular momentum. We choose the z axis of
the inertial frame as pointing in the direction of r (I—7 in the
figure). In addition I = ||T|| must be constant as well.

m In body axes, = [lwi lwy kn]T, so that
[ é’f = I3n = cos Ol this is, the angle between [ and the
body z axis is constant; this angle, #, is the nutation angle. In
addition:

V1 — cos? 0 _ V2 — 12n? _ lw, |

= —tan =
cosf Isn Isn I3 K LR

m Exercise: prove that the angle between r y@is @ —y=cst. 12/5

tanf =



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Analytical solution.

m Thus the situation is as in the figure (where H = T).

H

/ Line of Nodes

m This justifies introducing Euler angles to describe the
movement, in the sequence (3,1,3), where one already knows

that 6 = Cst.
A NN T -
Z” XS ZS/
13/59
Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics
Axisymmetric case. Analytical solution.
m For the sequence
n-2ys 9.5 Y BFs
Z" XS ZS/
the kinematics are, replacing 6 = Cst:
wi = ¢sinfsint 4 0cosyy = ¢sinfsiny
Wy = gﬁsin@cos¢ — ésinzp = gﬁbsinﬁcoszp
w3 = 1)+ ¢cosh
m Applying w? + w3 = w?, we obtain: wy» = ¢sinf. Thus
gb.: ;";29 = Cst, the precession rate. Finally
wzn—qbcosﬁzn—%:n.—%”:n#:)\:Cst.
. © wi» . hkn __ B(y+¢cosh)
m Similarly qb = =20 = Teosd from where
é . I3 %)
 (I-hK)cosO- LR

14 /59



Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Geometrical interpretation.

@ H

/ Line of Nodes

n-2s5.% s ¥ BFs
Zn xS ZS/

m Considering the sequence and taking into account the fact
that the nutation angle is constant and the other two angles
change uniformly, one can imagine the movement as the
rolling of one cone over another without slipping (with
constant angular speeds ¢ and @b) the point of contact is -
where the angular velocity @ lies. 15/:9\

Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Axisymmetric case. Geometrical interpretation.

(a) Prograde precession (b) Retrograde precession

m Remember tan~vy = tan 0’73 y ¢ = %. Two cases arise:

m Prolate body (thin symmetry axis, l5 < [): this is case (a).
Since v < 0 the cones roll one outside the other and since the
signs of ¢ and 1) are equal the rotation is in the same direction
(prograde precession).

m Oblate body (thick symmetry axis, /3 > I): this is case (b).
Since v > 0 the cones roll one inside the other and since the
signs of ¢ y ¢ are opposite the rotation is in the opposite
direction (retrograde precession). 650

fme



Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-free rotation of an asymmetrical body

m In the asymmetrical case, there exists a major, minor and
intermediate axis. The equations cannot be solved in terms of
conventional functions.

lhwi + (/3 — /2)002(,03 = 0
bhwy + (/1 — lg)wlw;.; = 0
lws + (/2 — /1)(,02(4}1 =0

m Some authors solve these equations by using Jacobi's
“elliptical functions”. However, it is not easy to
understand /interpret these functions, so we take a more
“geometric” path.

m Notice that, due to conservation of angular momentum, [is
constant (in inertial axes). Therefore ||| =T is constant no
matter what axes are used to write I'. In particular, in the
body frame, = [hw1 bhwo hws]T, therefore
M= llzw% + /2%3 + /32w§ = (Cst. 1759

fme

Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-free rotation of an asymmetrical body

m Similarly, in torque-free rotations the kinetic energy T is also
preserved. Which impliese 2T = llw% + Izwg + 13w§ = Cst’

m Therefore the components of the angular velocity, wy(t),
wo(t), w3(t), no matter their values, must satisfy

2 2 2
Wi Wy w5
2 2 r2 -
N
2 2 2
Wi, Yo Y3y

2r T2 Tt
h L) I3
m These are the equations of two ellipsoids: the angular
momentum ellipsoid and the kinetic energy ellipsoid. Thus the
angular velocity vector must always lie in the intersection of
these two ellipsoids; these intersections are known as “polhode

curves” . LR
18 /59



Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Polhode curves

m In general the curves, for given ellipsoids, are two disjoint,

closed curves.

NN
TR

e NN “'
¢"l» "li“t\;/!“

Trajectory of
possible w(r)

Energy Ellipsoid

m In two cases the intersection reduces to two points: when the
ellipsoids are tangent. These cases correspond to maxima or
minima of the energy. In addition, there is a saddle point
when the intermediate axes coincide, and the resulting curve

is called the separatrix.

Analytical /geometrical resolution.

Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Polhode curves: special cases

19/59

fme
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Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Torque-free rotation of an asymmetrical body

m Assume that /3 < kh </ (if not re-index the axes). Define
I* = % Subtracting the ellipsoid equations and multiplying
by 2, one gets:

hws (b — ") 4+ bw3 (b — ") 4+ kw3 (b —1*) =0

m Note that if /* < /5 all terms are positive (for non-zero
angular speed) so they cannot add to zero. Similarly if I* > &
all terms are negative. Thus, I* € 3, l1]. For fixed T, this
implies that kinetic energy has to lie inside an interval. The
extrema are /" = [; (minimal energy, implies wy = w3 = 0 and
thus a rotation about the 1 axis, the major one) and /* = &
(maximal energy, implies w; = wp = 0 and thus a rotation
about the 3rd axis, the minor oner)

m The case I" = I, has additional solutions besides pure
rotations about the 2 axis (w; = w3 = 0); these are called
separatrices.

e
|
S

21/59

Analytical /geometrical resolution.
Torque-Free rotation Stability. Major axis rule
Effect of a wheel on rotational dynamics

Polhode curves for fixed

m If T (H in the figure) is fixed and we vary the energy, we
obtain all possible polhode curves over the surface of the
momentum ellipsoid, including the separatrices.
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Stability of spinning spacecraft about a principal axis

The simplest solutions of torque-free motion are pure
rotations (spins) about a principal axis. Next, we start from
the solution of equilibrium &3 = n = Cst and &1 = &y = 0.
We study the stability of this equilibrium as a function of
whether the 3rd axis is major, minor or intermediate.

Let us perturb the equilibrium, defining wy = dwi, wr = dw»
and w3 = n+ dws. Substituting in Euler's equations:

l10w1 + (I3 — I2)(5w2(n + 5(,03) = 0
howy + (/1 — /3)(50.)1(!7 + 5&)3) =0
Iows + (I2 — /1)5&)25(,«)1 =0
m Neglecting second-order terms:
l1owy + n(l3 — /2)5(,02 = 0
howy + n(ll — /3)(50.)1 =
ks = 0 L}
23 /59
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Stability of spinning spacecraft about a principal axis
m The equation of dws defines a marginally stable equilibrium:
the perturbed solutions don't grow, but they don't dissipate
either.
m The equations for dw; and dwy can be combined as
2(l3 — b)(l5 — I
sy ¢ TR h) s
hh
m The stability of the solution to this equation depends on the
sign of (I3 — h)(/3 — ). For a positive sign, solutions are
oscillatory (again, they don't grow or dissipate: marginally
stable). If the sign is negative, the solutions are exponential
and one of the solutions grows in time (unstable)
m If 3 is the major axis: (ks — h)(k — ) =+ x + > 0: stable.
m If 3 is the minor axis:(l3 — h)(lk — 1) = — x — > 0: stable.
m If 3 is the intermediate axis:, (b — h)(kk—h) =+ x — < O0: o
unstable. =X

24 /59
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Stability of spinning spacecraft with energy dissipation

While the previous calculation is correct under a rigid-body
assumption (Euler's Equations), real-life solids are not
perfectly rigid.

There is always some deviation from the rigid body that can
cause some energy dissipation (flexibility effects, friction
between mobile parts, fuel sloshing). This modifies the
previous calculation as the system tends to go to an energy
minima.

Assume again 1 > I > 3. One idea (energy sink model) is
to, starting from physical principles (conservation of angular
momentum), find a minima of energy given the angular
momentum. This is, solve the mathematical minimization
problem

min hw? + hw3 + hw?
subject to /fw% + Ifw% + I32w§ —I?

fme
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Stability of spinning spacecraft with energy dissipation

Using Lagrange multipliers:
L(w1,wz,ws, A) = hw? 4+ hw3 + hws + MI2w? + Bws + 13ws —T2)

One has 0 = 2L = 2fw;(1+ AJy), i=1,2,3
Therefore there are three solutions:

o —_1 _r _r
B wr=w3=0, A\ = iwW1= T—2,1.
a0 N — 1 _r 7_r
B wi=w3=0, A\ = w2 = T—2,2.
g — —_1 _r _r
B wi=wr=0, \ = w3 =g T_2/3'

Comparing the values of the objective function (the energy),
clearly the minimum is given by the first solution (the second

is a saddle point and third one is the maximum). Thus the

only spin which is mathematically stable and at the same time

a minimum for the energy are rotations about the major axis.
Based on this argument, we can now state the major axis rule:
“For spacecraft with dissipation of energy, the only stable o

spins are those about the major axis”. o
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Stability of spinning spacecraft with energy dissipation

m The geometrical effect of the major axis rule is that polhodes
become a single closed spiral curve that goes from the
maximum of energy to the minimum of energy:

(U

Separatrices

fme
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Example: fuel sloshing

m Consider a satellite with a spherical tank filled with viscous
fuel, so that the fuel (with inertia J and friction coefficient A)
can be modelled as a “solid bubble” with its own angular

speed & = [o1 02 03] 7 relative to the satellite.

m ExtraCstd from C.D. Rahn, P.M. Barba, “Reorientation
Maneuver for Spinning Spacecraft”, AIAA Journal of
Guidance, Dynamics and Control, Vol. 14, 1991.

(h — N1 + (B — h)waws = Aoy
(b —Nwz + (h — B)wiws = Aoz
(B —Nwz + (b — h)wws = Aoz
. . Aoy
01 + w1 + wpo3z — w302 = —T
. . Aoy
09 + wy + w301 — w103 = —T
Aosj

03 + w3 +wiop —wro1 =
m By dissipation, any starting spin ends up aJmajor axis spin;
however, it is not possible to know a priori the orientation of
the rotation, since the equations display strange (chaotics) u
dynamics. 28 /59
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Example: fuel sloshing

m The fact that the equations have chaotic dynamics means
that the sense of rotation totally depends on the initial
condition, to the point that any change on the initial
condition, no matter how small, can produce a variation in the
sense of rotation.

m Thus, to all practical effect, it is not
possible to predict the final sense of
the rotation.

m A plot in which one marks with the
same color the initial conditions
producing the same sense of rotation
becomes enormously complex, due to 2
this chaotic property of the equation.
These kind of plots are known as
fractals.
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Major axis rule. Additional comments.

m The instability of minor axis spinners is, from the point of view
of time-scales, much slower than the instability of intermediate
axis spinners, depending on the rate of energy dissipation.

m If one desires a major axis spin one can amplify energy
dissipation by adding dampers, such as nutation dampers
(pendula with added friction).

m However, if for some reason one needs a minor axis spin this is
no issue if it is only required for a short period of time and
dissipation is not too large. Later the body will return to a
major axis spin naturally.

m Important: the presence of mobile part such as inertia wheels
may change these theoretical results.

fme
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Rotational dynamics with a wheel

Let us start with how Euler's equations are modified by the
presence of k wheels.

For each wheel i, assumed axisymmetric, define Ig; as its
momentum of inertia in the rotation direction & and its
relative (to the spacecraft) angular speed as wg;.

Since a wheel is symmetric, it does not change the distribution
of mass: total spacecraft inertia does not change at all.

The angular moment of the spacecraft + wheels is:

[= T/ + Si g & lriwri

Expressing the derivative ['= M in the body frame one can
obtain the differential equations of motion.

e
—
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Three wheels in principal axes
m If there is a wheel about each principal axis, the spacecraft
B wr1lRr1
angular momentum is I' = Zdig/y + | wr2/r2
wRr3lr3
m Thus the dynamics is given by
hwi + (B — h)waws + Ir1wR + IR3wr3w2 — lRowrows = My
hwy + (h — B)wiws + lrowr2 + IR1WRIW3 — IR3WR3WT = Mo
Bws + (I — h)wawi + IrR3wR3 + IRoWRoW1 — IR1WRIW2 = M3
m One needs to add the equations describen the wheels’ spin.
For instance, if for each axis an electric motor with (internal)
torque Jg; drives the wheels, these equations would be
IrRi(w1 +wr1) = K
Ir2(w2 +wr2) = J3 .
. . |
Ir3(ws +wr3) = J3 -

32/59
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One wheel about the 3rd axis

m Assume that a spacecraft has an inertial wheel about the 3rd
axis, with inertia /g, and spinning at a velocity wg relative to
the spacecraft. It could even be a part of the spacecraft (see
dual spin-stabilization in lesson 7).

m Angular momentum is I = [hwy hwo hws + lrwr] "

m Rotational dynamics become

hawt + (B — b)wiws + lrwrwy =
bd@—%(h_—-b)w1w3——lRwRaq
lws + lrwr + (/2 — /1)w2w1 =

m One needs to add Ig(w3 + wr) = J, where J is the torque
driving the wheel (if any).

fme
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Spin stability with a wheel.

m One can use the motor to produce a torque that mantains wg
constant. Then:

hwr + (I3 — /2)(4)20.}3 + lgwrwy, = 0
bhwy + (/1 — 13)w1w3 — lgwrwy = 0

lws + (/2 — Il)LUle = 0

m New terms appear that modify the previous stability analysis.
Even the intermediate axis can be made stable! Repeating the
steps for mathematical stability:

(n(ls — k) + Irwr) (n(ls — h) + lrwr) 5

0w + Il

=0

m Now if 1 is the minor axis and 2 the major, the condition for
stability is n(/s — ) + Irwg > 0, this is, wg > 25n.

m Next, we repeat the analysis in the case of energy dissipation
by using the energy sink method.

fme
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Spin stability with a wheel and energy dissipation.

Spin

m Let us minimize the energy fixing the angular momentum
(since it is a torque-free motion).

m [hen

2T = /1(,0% -+ /zwg + /3(4}% + Iwa?,
2 = 1203 4 I3ws + (hws + lrwgr)?

m The last term of the energy can be ignored since it is a
constant and does not influence the minimization process.
The problem is posed as

min hw? 4+ hw3 + hw?
subject to Ifw? + 13w3 4 (hws + lrwg)? = I

fme
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stability with a wheel and energy dissipation.
m Using Lagrange multipliers

L(w1, wa, w3, A) = hows + hw? + w3 + A(IFw? + Bwl + (hws + lgwg)® — )
m One gets 0 = 2L = 2/w;(1+ Al), i=12y
1

0= g_cé = 2/3(0.)3 + )\(/3(,03 + /RwR))
m Several solutions exist, we take

n

wi=wr=0, w3=n A Py

m To identify if it is a minimum or not, we use the following
theorem: Let L(x,y,z) = F(x,y,z) + AG(x,y, z) be the
Lagrangian of the system so that F is the function to
minimize and G(x, y,z) = 0 the constraint. Then, construct
the matrices:

|

o X

QIQ QI
~<‘ ‘m °
‘QJ
N
o
S)N&a‘@
~ Q=0
| —
£
|
5 5 55 =
Na <la X|a
Q Q
NoX
~ N
o 9
e
S
o5
=N
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Spin stability with a wheel and energy dissipation.

m If x*, \* is the critical point under analysis (i.e., the point
that makes the first derivatives of L zero), to determine if
there is a minimum or not, it follows that if:

9 (x*,y*,z*) # 0

Det(Hs(x*,y*,z*,A*)) <0

Det(Hy(x*,y*,z*,1*)) <0
then there is a minimum at the critical point (sufficient
condition, not necessary!).

m In our particular case, to verify the theorem, define x = ws,
Yy =wi, Z=wy. lhen:

0 2l3(ln + lrwgr) 0
Hs = |: 2l3(n + lrwg) 2I3(1 + Al) 0 :|
0 0 20 (1 + M)
0 2/3(I3n+ I,wR) 0 0
H, |: 2’3(/3!1 + IrwR) 2/3(1 + )\13) 0 0 ]
s = 0 0 21 (1 + Ah) 0
0 0 0 2h(1 + Ab) °
-
37/59
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Spin stability with a wheel and energy dissipation.
m The (sufficient) conditions for a minimum are:
%(x*,y*, z*) = 2k(ln+ l,wg) # 0 (since if the other two
angular speeds are zero, one has hn+ l,wg = £ # 0).
Det(Hs(x*, y*, z*,\*)) = =8/3(hn + Lwg)*h(1 + AL) <0
Det(Hy(x*, y*,z*,\*)) = Det(H3)2hL(1 4+ A\hL) <0
m Two conditions are then reached
1 ﬁ-,X/l > O,
1+XhL > 0.
m Using the value of \ that we derived before:
lin
— 1— 0’
hn+ lrwgr
bn
hn+ Irwgr
m One has to be careful with the sign of l3n 4+ Irwr since when °
|

solving for wg the sign of the inequality can change.
38 /59
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Spin stability with a wheel and energy dissipation.

m Instead of solving for wr we can simplify the fraction,

reaching:
(/3 — /1)/7 + lrwp
0,
lhn+ Irwgr
(/3 — /2)[7 + /RwR
0,
lhn+ Irwgr

m [wo cases:
If lsn+ lrwg > 0, this is, wg > —52, the conditions reduce to

Ir !
(/1—/3)[1 (IQ-/3)I‘I
wR>—IR ,wR>—IR .

If bn+ lrwg < 0, this is, wg < —52, the conditions reduce

Ir’
(Il—/g)n (/2—/3)[7
towr < = WR < P

m Notice that these conditions are similar (but more restrictive)

than the ones obtained without energy dissipation! -
39/59
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Spin stability with a wheel: Example.
m Consider a satellite with a wheel in the 3rd axis with:
10 0 0
z = [ 0 30 0 :|kg~m2, n=60r.p.m., Ir =2 kg - m>.
0 0 20
m Need to study the required spinning speed for the weel for the
3rd axis (intermediate) to be stable.
m With the rigid-body hypothesis (no dissipation):
(n(kh — k) — Irwg) (n(ls — h) + Irwgr) < 0. Two cases
First parenthesis is negative, second positive. Conditions
become: wgr > "(12,—;’3) = 300 r.p.m. and
wgr > "(13,—;’1) = —300 r.p.m.. Since the first condition is more
stringent: wr > 300 r.p.m..
Second parenthesis is negative, first positive. Conditions
become: wr < "(IQI—;M = 300 r.p.m. and
wr < ”(13,—:1) = —300 r.p.m.. Now the second condition is
more restrictive, therefore wg < —300 r.p.m..
m Thus, the spin is stable if wg > 300 r.p.m. or if -

wr < —300 r.p.m., but unstable if wg € [-300,300] r.p.m.
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Spin stability with a wheel and energy dissipation:
Example.

m With energy dissipation, two cases show up again:
If sn + Irwr > 0, this is wg > —5%2 = —600 r.p.m., then
wr > 7B = 300 rpm., wg > £78) = 300 r.p.m.. The
third condition is more restrictive so wg > 300 r.p.m..
If sn + Irwr < 0, this wg < =52 = —600 r.p.m., then
wr < % = —300 r.p.m., wr < % =300 r.p.m.. The
first condition is the more stringent, thus wg < —600 r.p.m..
m Thus, the spin is stable if wg > 300 r.p.m. or if

wr < —600 r.p.m., but unstable if wg € [-600,300] r.p.m..

m Notice in wg € [—600, —300] r.p.m. the two models differ;
however, the model with dissipation is more realistic, so the
conclusion is that the rigid-body model is failing in that

interval of wg! g
41/59
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Non-zero torque spins
m In practice there are always some perturbation torques. While
typically of small magnitude, they might be persistent (such
as gravity gradient which acts in the full orbit at all times).
They might be large as well, for instance in the case of
imperfectly aligned thrusters during manoeuvres.
m We analyze two cases:
m Perturbation torque acting on a spinning solid (gyroscopic
effect).
m Gravity gradient stability.
4
=
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. Gravity gradient. Stable orientation.
Non-zero torque spins

Spinning body subject to a constant external torque.

m Hypothesis:
m Axisymmetrical spacecraft: h = hL = 1.
m Spinning spacecraft with speed n about axis 3, this is, w3 = n.
m Perturbation torque M; constant about the axis 1. No torque
about the other axes.

m Example: spin-stabilized spacecraft making a propulsive
manoeuvre with slight unalignment of the thruster axis with
the center of mass. If there is no spin, the resulting torque
causes an immediate rotation of the vehicle and failure of the
manoeuvre.

m We will see that a spinner acquires the so-called “gyroscopic
rigidity” and the perturbing torque produces a slight
movement of precession and nutation of the spin axis.

L]
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Spinning body subject to a constant external torque.
m Euler's equations reduce to
lwy + (/3 — /)WQW3 = M
lwy + (/ — /3)(,01(,03 = 0
hws = 0
m We find immediately w3 = Cst = n and define A\ = #n y
= % Two equations remain to be solved:
Lbl —-,Xcdz = W
wr+Aw; = 0
m Taking time derivative in the first equation and substituting
the second:
G1+Nw = 0
m Harmonic oscillator: wi(t) = Asin At + B cos At. LN

44 /59
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Spinning body subject to a constant external torque.

m Substituting the solution in the 1st equation
wa(t) = Acos A\t — Bsin A\t — &.

m Replacing initial conditions w(0) and w»(0) we reach:
B = w1(0), A=w>(0) + &. Thus:

w1 <w2(0)+ %) sin At + w1(0) cos At = ; sin At

7 b
wr(0) + — J cos At — w1(0)sin A\t — — = — (cos At — 1
(w20 + %) 10) Loty )

w2

where finally we have replaced w1(0) = w»(0) = 0.
m Use now Euler angles

0 0
| 25 26
xn yS

03

z5'

s BFS

m Developing the kinematic equations we stop at:

. w1 cos 03 — wo sin 63
61 =

cos 6o
92 = wjisin 63 + wy cos b3 Py
63 = w3+ (—wicosB3+ wysinbz)tan by \!\
45 /59
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Spinning body subject to a constant external torque.

m Take zero initial conditions for the angles.

m With the expectation that 6; and 6, should be rather small
whereas 63 has to be large (it is the angle of the spin axis) we
replace cosfr ~ 1y tan @, ~ 0, (verify later!). Reaching:

9.1 = Wwj COoSs 83 — Wy sin 93
92 =  wisinf3 + wy cos b3
é3 = w3+6 (—wl cos 63 + wo sin 93) = w3 — 929.1
m Assume as well w3z > 001, then we find 03 = w3t = nt.
m The equations for 61 y 0> are:
91 = (wj Ccosnt — wsysin nt
92 = wj sin nt + wo cos nt
m Substituting the values of w; and wy previously found:
0, = %sin At cos nt — % (cos At — 1)sinnt = g (sin (A — n) t + sin nt)
n

0, = X sin \tsin nt + Y (cos At — 1) cos nt S (cos (A — n)t — cos nt“)m59
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Spinning body subject to a constant external torque.
m By simple integration and using the initial condition we reach

0, = =“
! b\

m (sin (A=n)t  sin nt)
0, = = _
A A—n n

m <1—cos(>\—n)t+ 1—cosnt>
A—n n

m Defining A, = ﬁ y wp = n— A, amplitude and frequency

of precession, respectively, and A, = % y wn, = n, amplitude
and frequency of nutation, respectively. The solution is then
written as:

61 = —Ap (1 —coswpt) + Ap (1 — coswpt)

6> = Apsinwpt — Apsinw,t

m Superposition of two circular movements: epicycloid.

m Amplitudes are given by A, = U_";’Wé y A, = (I_’\fﬁ and
the gyroscopic effect increases as n, I3/1, and the difference
| — I3 increases. The amplitudes should be small for the

assumptions to be true: large n.

fme
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Gravity gradient.

m The most important perturbation torque is gravity gradient,
as it is always present in orbit.

m Simplification: consider an asymmetrical spacecraft in circular
orbit with radius R around an spherical planets; elliptical
orbits and/or deviations from speherical gravity (i.e. the J,
perturbation) introduce higher-order terms that we do not
analyze (they produce the so-called librations: oscillations
around the stable orientation).

m Angular velocity is defined as usual in body axes with respect
to inertial, but the selected Euler angles are w.r.t. the orbit
frame, which is non-inertial. This subtlety has to be taken
into account in the analysis.

m The situation is as in the figure of the next slide. N axes are
inertial, A axes are from the orbit frame (to be defined) and B

the body axes (principal axes of inertia). L]
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on-zero torque spins

Gravity gradient.

Earth

Orbital Path

m Orbit frame: centered in the spacecraft. The direction z (&3)
points towards Earth’s center (rotation:yaw). The direction x
(31) along the orbital velocity (rotation:roll). The direction y
(32) opposite to the orbital angular momentum h (orthogonal
to the orbital plane, rotation:pitch).

m These axis spin with respect to the inertial frame N about the

—a> axis with angular speed n = /%5

m Thus the relationship between frames is as follows

—nt 0 0 0
N :>A 35 S z>5’ L. B
!/

y zA y

xS

Constant external torque.

N . Gravity gradient. Stable orientation.
on-zero torque spins

Gravity gradient.

Orbital Path

m The matrix CE and its differential kinematic equation is:

cOrcO3 cbys63 —s0>
CE = —cO1s03 + sO1s6,c03 cO1cO3 + s01s07s03 s61cOr
s61s03 + cO1s6,c03 —s601c03 + cO1507s03 cOichy

9:1 1 cby s62s601 s0ycO1
0y 0  cbichy —sb1chy QE/A

03 c 0 s61 chq

fme
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Constant external torque.

N . Gravity gradient. Stable orientation.
on-zero torque spins

Gravity gradient.

Orbital Path

m First let us derive the gravity gradient torque. For each dm of
the spacecraft, there is an acting (gravity) force

= R (RC+ 5)
m [he moment of the forces is therefore:
. B R. R
M = pxdF =—u [ px +pd — [ udm
3 3
v v IRe + 7 VIRe+0P° &

51/59

Constant external torque.
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on-zero torque spins

Gravity gradient.

Earth

Orbital Path

m Since
M~ 53 pdem+3R5/vp><ﬁc(ﬁc ) dm
(o}
— 32t R.AR. - 7)dm = —3LL Rx 55T dm | R
= Sgs [ PX c(Re - p)dm = =3=R; V:OIO m | Re
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N . Gravity gradient. Stable orientation.
on-zero torque spins

Gravity gradient.

m Thus M = 355 =4 RXIR
Thus, in the B frame:

In the A axes, RA=[00 — R]".

——892
g = CRR: = —Rc | sbich
C91C92
m Thus
. 0 —C91C92 S(91C92 Il 0 0 —802
MB = 3% cfych, 0 s, 0 h 0 || sbich
—s61c05 —s65 0 0 0 &K chich,
m Operating: ]
. 0 —0910292 801(:92 —89211
MB = 3n2 091(302 0 892 89109212
—891C92 —892 0 C91C92/3
[ —C91C202891(IQ — /3)
= 3n° ch1c0280, (15 — ) i
891C92892(/1 - I2) 53 /59
Constant external torque.
e (e Gl Gravity gradient. Stable orientation.
Gravity gradient.
m Replacing the gravity gradient torque in Euler's equations, we
get ODEs for the angular velocity:
/1@1 [wgw;z, - 3n2C916262801} (/2 - /3)
/202)2 = [w1w3 + 3n2C01002892} (/3 — Il)
hws = [Uszl + 3n2891C92892} (/1 — /2)
n On the other hand since
B~
wB/N = wB/A +wA/N = wB/A + C, wA/N, there follows:
w1 0 w1 ctrs03
dz’g/A = | w | — CE —n | =1| wy | +n cO1cl3 + sb1s6-s0;3
w3 0 w3 —s61cl3 + ch1s0,803
m Then the kinematic ODEs are
9:1 1 (392 892831 892c01 w1 n 893
0- = 7 0 chicly —sbich> wo 4+ 7 002(383
93 €72 0 891 091 w3 €72 892893 :
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Constant external torque.

N . Gravity gradient. Stable orientation.
on-zero torque spins

Stable orientation

m System of 6 nonlinear ODEs. Making zero the derivatives we
can find the equilibria:

0 = [w2w3 - 3n2c01c202591] (h — k)

0 = |:LU1£U3 -+ 3n2C91C02892:| (I3 — Il)

0 = |:w2w1 + 3n2391c02592] (h — b)

- 1 chy s0ys604 s6ycO1 w1 n sO3

0 = 0 ch1cHy —sb1cHy wo + — clychs
ch 0 501 chq w3 ch s0ys03

m One equilibrium iswy = w3 =0, wp = —n, 01 =6, =63 =0,.
Warning:there are other possible equilibria (i.e. #; = 7).

m |f we are close to the equilibrium and to analyze its stability,
we can consider small angles and linealize the equations,

finding
w1 — [nwg + 3n201] (h — 1)
Wy = 3n%0y(h — h)
w3 = —nwi(h — k)
él w1 + nb3
9:2 = w2 -
63 w3 — nB1 e
55 /59
Constant external torque.
e (e Gl Gravity gradient. Stable orientation.
Stable orientation
m Taking a derivative in the angle equations
51 = w1 + né3
by = o
63 = W3 —nby
m Using these equations to eliminate the w;'s we find
/1é1 = — [né3 +4n291] (/2 — I3) + n/1é3
hiy = 3n%0y( — Ip)
ko3 = —n(61 — nB3)(h — k) — nk6;
m The second equation is stable if /3 < ;. The first and third
are more challenging. Writing the system matrix:
iy I
- éf = 4n27’3g’2 0 0 ,,!3*/’12+/1 9.3
63 o ik hohoh 0 63
3 3
m Define ky = 275 y kg = 22h Since h+ b > 5, b+ I3 > 1,
h e} °
lh + I > b, one gets ki, ks € [-1,1]. LA
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Constant external torque.

N . Gravity gradient. Stable orientation.
on-zero torque spins

Stable orientation

m [he matrix writes

61 0 0 1 0 01
d | 6 0 0 0 1 03
gl 61 | T | —4nPK 0 0 n(1 — k) 61
03 0 —n?ks  n(ky — 1) 0 03

m Studying the eigenvalues of the matrix, we find the
characteristic polynomial:
M+ A2n%(1 + ky(3 + k3)) + 4n*ki k3 = 0, cuya solucién es:

A= in\/_(l + k(3 + k3)) £ /(1 + k(3 + k3))2 — 16ki k3
2

m Eigenvalues are stable (non-positive real part) if and only if
the two options insde the square root are real and negative,
thisis: —(1+ ki1(3+ k3)) /(1 + k1(3 + k3))2 — 16k1 k3 < 0.
This only happens if:

m —(1+ ki(3+ ks)) <0, this is, 1+ ky (3 + ks) > 0.

| \/(1 + k1(3 + k3))2 — 16/(1/(3 IS reaI, this
is,(1 + k(3 + k3))? — 16ki ks > 0.

m 16k ks > 0 (if not there would be a positive number inside the
I’OOt) 57 /59
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Constant external torque.

N . Gravity gradient. Stable orientation.
on-zero torque spins

Stable orientation

m Plotting the conditions in a chart:
m From 16ki k3 > 0, we obtain ki and k3
with the same sign.

Since I3 < I, one gets that

ki — k3 > 0.

if k1 > k3 > 0 we obtain “Lagrange’s
region " (right-upper triangle).

There is another region (known as
“De Bra-Delp”) obtained from

(1 + k1(3 + k3))2 — 16ki1 k3 > 0.
However it is sensitive to energy
dissipation, which makes it unstable.

Fig. 6.9 Gravity-gradient stability plot. =
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Non-zero torque spins

Stable orientation

m In summary:

Fig. 6.9 Gravity-gradient stability plot. W

Constant external torque.
Gravity gradient. Stable orientation.

The practical stable zone corresponds
to k1 > k3 > 0, which in turn implies
that /b, > I and I, > 5. Before we
already obtained /3 < /1. Thus axis 2
(orthogonal to the orbital plane) must
be the major axis, axis 3 (pointing to
the planet) the minor axis of inertia,
and axis 1 (in the direction of orbital
velocity) the intermediate.

Careful: the angles at the equilibrium
are 0° but they can also be 180° (the
“opposite” attitude is also stable!).

How many stable equilibria? How
many unstable equilibria?

o
u
S
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Attitude estimation

m The (dynamic) estimation of attitude (classicaly known simply
as attitude estimation) requires the use of kynematic models,
gyro measurements, and Kalman filter, as well as
complementary sensors (measuring a direction).

m Gyros measure the angular velocity wg/, w.r.t. the inertial
frame. One can recover the attitude by using this
measurement to integrate the kinematic differential equations.
Unfortunately, small errors acumulate over time generating a
certain drift in the estimation; thus it is always necessary to
use additional sensors to improve the measurement.

m [To better understand how errors acumulate, one needs to
model it as an stochastic (random) process, and use the

propagation equations.
m Notation: in this lesson, arrows will not be used for vectors. e
33

2/



Error as an stochastic process

Stochastic Processes

m A stochastic process (or stochastic variable) is a random
variable X(t) whose distribution evolves (changes) with time.
Estimation errors are modelled as this.

m Thus, mean and covariance also change with time: m(t),
Y (t).
m For a process, one can define the autocorrelation as

R(t,7) = E[X(t)X(7)T]. Autocorrelation allows to model
how the past history of X influences its present value.

m Gaussian process: A Gaussian process verifies
X(t) ~ Np(m(t),x(t)), this is, it is distributed as a
multivariate normal whose mean and covariance evolve with
time.

fme

Error as an stochastic process

White noise.

m White noise: It is the process v(t) verifying:
m E[v(t)] =0.
m E[v(t)v(t)T] = Q.
m R(t,7) = E[v(t)v(7)T] = §(t — 7)Q, where 6(x) is 1if x =10
and 0 otherwise.
m The last condition means that the value of white noise at
present is independent of its value in any previous instant.

m Gaussian white noise: It is a process verifying the previous
conditions and in addition, being Gaussian.

m A good model for sensor errors is de(t) = b+ Dv, where v is
Gaussian white noise. The value of b is the mean of the error
(bias), which sometimes is also modelled as a process itself
(albeit slowly varying).

fme



Error as an stochastic process

Propagation of error. Continuous case

m Consider a differential equation such as
x = Ax+ Dv,

where v is Gaussian white noise with covariance @, and the
initial condition is also a Gaussian: xg ~ N,(mg(t), Po(t)).
This is called a stochastic differential equation (the simplest
possible one). Then one has that x is a Gaussian process,

x ~ Np(m(t), P(t)), with mean and covariance evolving as
follows:

m = Am,

P = AP+ PAT +DQDT,
m(0) mo,
P(0) = Po

fme

Error as an stochastic process

Propagation of error. Discrete case

m Consider a discrete equation of the type
Xk4+1 = Axk + Dby,

where by is Gaussian white noise with covariance @y, and the
initial condition is also a Gaussian: xp ~ N,(mg(t), Po(t))This
is called a stochastic discrete process (the simplest possible
one). Then one has that x, is a Gaussian process,

Xk ~ Np(mg(t), Px(t)), with mean and covariance evolving as
follows:

Mk+1 = Amy,
Peii = APAT +DQDT,

fme



Error as an stochastic process

1-D example: gyro drift

m When one has gyro measurement, one needs to integrate the
kinematic differential equations with the measurement.

m To easily grasp the concept of “error as a process”, let us
analyze the easiest possible case: a single degree of freedom in
rotation. Thus, there is a single angle 6, whose kinematic
differential equation is

0=w

m A gyro produces a measurement of w which we can denote by
(; for simplification purposes, assume we have a continuous
measurement (it will be fast but not really continuous). In
reality, it will not be exactly w, but it'd rather be corrupted by
some noise (which we model as Gaussian white noise, with
variance Q related to the quality of the gyro) v:

A d
Ww=w—V LR

Error as an stochastic process

1-D example: gyro drift

m If one tries to estimate 6 (denote the estimation as §) from &
and assuming we know some estimation of its initial value 6,
one would just write:

0= ,0(0) = b

m Thus the estimation error 60 = 6 — 0 verifies:
H=w—0=v

m Assuming some initial error 60(0) ~ N(0, Py), one finds by

applying the previous theory that the error

00(t) =~ N(m(t), P(t)), with:

m=0,m0)=0— m(t)=0, P=Q,P(0)=Py— P=Py+Qt
m Thus, even if the mean of the error is always zero, the

variance grows linearly in time and eventually blows up, thus

this estimator is useless in the medium-long term (but note
error is small in the short term if Py was small to begin with). 5,
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Error as an stochastic process

External measurement

Now assume one has external measurements of the angle with
an additional sensor. When time t = t; (this is at certain time
instants) one gets d(tx), which we denote as ™, with some
other device (which also should have some associated error,
thus é,’(" = 0 — ¢, where € is white noise with variance R.
Since time in-between measurements could be large, maybe it
is not a good idea to ignore the gyro and say A(t) = QA[(" for

t € [tk thrt)-

A possible idea is to reset the estimator of the previous slide
when t = t, this is, combining the measures as follows:

=0, 0(t)=07, telt,tir),
Thus every new external measurement resets the initial
condition of the differential equation and one integrates again.
It is easy to see that the estimation error now verifies
60 ~ N(m(t), P(t)), with m(t) =0 and P = Q, for =
t € [tk, tkr1), with P(ty) = R, thus P = R+ Q(t — tx). 9/33

1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

Kalman Filter

The resetting idea makes the error maximum just before a
measurement. The error would be P = R + Q(txy1 — tk)
right at that time instant.

The problem with resetting is that it neglects the previous
estimation from the differential equation, when in-between
measurements it does not grow so large (it is short term). The
idea of Kalman filtering is to combine the estimation from the
differential equation (called the “a priori” estimation obtained
from a “propagation step”) with the external measurement in
an “update step” to obtain the “best possible combination”
(called the “a posteriori” estimation). The combination is
best in the sense that it minimizes the covariance.



1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

Kalman Filter

m Some notation: estimation before the measurement is called a
priori and denoted as 6, .

m Estimation after the measurement is the a posteri estimation,
denoted as 9;: and it is computed as:

0r =0, + KO —0;)

where K is the Kalman gain and the parenthesis is the
difference between the external measurement and the a priori
estimation.

m K is computed to minimize the covariance of the a posteriori
error.

fme
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1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

Kalman Filter

m Covariance a priori is called P .

m Remember the formulas for combination of normals from
Lesson 3 (slide 32).

m A posteriori, computing the covariance of (9;5:
Pl =(1-K)*P, + K°R

m Take derivative w.r.t. K and make it zero to find a minimizer:

_ P
0= —-2(1-K)P, +2KR, thus K = Pk_:R.
m Then covariance a posteriori becomes with that value of K:
+_ PR
K P +R

m It can be seen that P’ is less than both R and P, (since both
are positive numbers): thus one gets to improve estimation by

using all the available information in the best way! "
12/33



1-D Kalman Filter example

Estimation: Kalman filtering EinFe;aridhr’w\;leaErFléalman Al

Kalman Filter

m Summarizing the algorithm:

m Initialization: For ty = t = 0 start with 9;{ = 0o and P = P,.

m Propagation: For t € [tk, txr1), k =0,..., one integrates
from the last a posteriori estimation both the estimation and
the covariance of the error

d=w, dt)=0/, P=Q, Pt)=P],

m Update: When t = t;1 set HA;H = O(tx,1) and
'f)k_+1 = P(tx+1), and one gets the external measurement
1. Apply the KF:

I Amed A
01 = Opi1 + KIOREL — 04i1),

P P_ R

where K = —ktL_ 3lso P, = —&+1°
PR k+1 Pia TR ®
m Increase k and repeat the propagation step. 3,
13/33

1-D Kalman Filter example

Estimation: Kalman filtering EinFe;aAJlﬁErFEalman Ay

Kalman Filter: dependence on process/measurement noise

m If the measurement of the gyro is of very bad quality (Q is
very large) then P, — oo, one can see tha then P,'f — R,
K — 1, and therefore 9;5 — éT (this is the resetting method:
one takes the external measurement ignoring the result of
integrating the differential equation).

m If the external measurement is of very bad quality (R is very
large), then P, — P, K — 0, and thus QA; — 9; (the
estimation is just the result of integrating as if there was no
external measurement).

m If it happens that P,” — R, this is, the a priori estimation and
the external measurement have the same level of error, then
P — R/2, K — 1/2, and then 9,‘5 — m (one takes the
average between the integration step and the external
measurement; note that the error is halved).

fme
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1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

Kalman Filter: additional considerations

This is a considerable simplification because only a 1-D linear
case has been considered.

Next the n-D linear case will be studied, the the nonlinear
case (addressed by linearization), and finally a special case
involving quaternions.

In any case, conceptually all are the same: one integrates the
kinematic differential equation with the gyroscopes and when
obtaining an external measurement, the Kalman algorithm is
used to weight the a priori estimation and the measurement.

In aircraft and missiles Kalman Filtering is used to integrate
the use of IMUs (gyros+ accelerometers) with external
measurements such as GPS.

o
LR
15/33
1-D Kalrrjan Filter examPIe
Estimation: Kalman filtering EﬁnFe;aridllr&/elaErFENman iz
Kalman Filter for linear systems
Next the KF will be explained for linear systems which are
continuous with discrete measurement.
All systems are in practice discrete, however, this explanation
is simpler conceptually speaking and can be easily
implemented in a lab setting.
In the nomenclature of KF, a system is known as a “process” .
Note that the following development is conceptually very
similar to the 1-D example, but more abtruse in terms of
notation (and the number of involved matrices).
KF is used in many engineering contexts (e.g. navigation,
orbital mechanics, tracking...). It is a very useful tool to know.
o
LR
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1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

System model (linear case)

m PROCESS: The process is continuous
x(t) = A(t)x(t) + B(t)u(t) + D(t)e(t), where x is a Gaussian
process of dimension n,, A(t) is a matrix (that could be
time-varying) of dimension ny X ny, €(t) is Gaussian white
noise of dimension n. and convariance Q(t) (process noise),
and D(t) is a matrix es una matriz (that could be
time-varying) of dimension ny, x n.. u(t) if it exists is some
input (e.g. gyro measurement) of dimension n, and B(t) is of
dimension n, X n,.

m MEASUREMENT: In discrete times t = t, a measurement z
is taken, defined as follows: z(tx) = Hix(tx) + v(tk), where z
is of dimension n,, Hy is a matrix (that could be time-varying)
of dimension n, X ny, and v(tx) is Gaussian white noise of
dimension n, and convariance Ry (measurement noise).

m In addition v(tx) and €(t) should be independent and the o

initial condition of x is x(tg) ~ Ny (X0, Po)- .

1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

System model (linear case)

m Summarizing:

x(t) = A(t)x(t) + B(t)u(t) + D(t)e(t),
z(ty) Hix(ty) + v(tk),
Ele(t)] E[v(t)] =0,

Ele(t)e"(1)] = 6(t —7)Q(1),

Elv(t)v’ ()] = OiiRx,

Ele(t)v ()] = 0,
x(to) ~  Np (%0, Po).

m Define the estimation (in t) of x(t) as X(t).

m Define the covariance of the estimation error as
P(t) = E[(x(t) — %(£))(x(t) — %(£)) "],

m The goal of KF is, using the above model, and from the
measurements z(ty), obtain the best possible estimation, this
is, the value of X(t) that minimizes P(t).

@
L
~—
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1-D Kalman Filter example

Estimation: Kalman filtering EinFegaridllr’l/elaErFEalman s

m If there are no measurements one can take X as the mean of

the process; then, x(t) ~ Ny, (X(t), Px), where:
(t) = A)R(t) + B(t)u(t),

P = A(t)P+ PAT(t)+ D(t)Q(t)D (t).

The idea of the KF is that this is the best we can do until we
get a new measurement at t = t, z(tx). Denote the
estimation until then (the “a priori” estimation) as X~ (tx)
and the covariance of the error as P, .

Now if the estimation and measurement were perfect, one
would have z(tx) = HiX (tx). However, since this is not the
case, one updates the estimation (obtaining the “a posteriori”
estimation) proportionally to the discrepance between what
we expect to measure and what we really measure:

)?—{_(tk) = )?_(tk) + Kk(Z(tk) — Hk)?_(tk)).

fme
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1-D Kalman Filter example

Estimation: Kalman filtering EinFe;aridllr&/elaErFEalman e

In )?+(tk) = )?_(tk) + Kk(Z(tk) — Hk)?_(tk)) we don't know
K, which is the Kalman gain. This is determined to
guarantee that he covariance of X*(tx), P}, is as small as
possible.

Compute P;: P = E[(x(tx) — & (tx))(x(t&) — X (tx)) 7],
and replacing X7 (tx):

e el - ) (- )

= E[(xe) =57 () — Kilele) — HET (1)
X (0 = 37 (0) = Klee) = w57 (0))]

m Substituting z(tx) = Hix(tx) + v(tk):

PE = B [(X(t) = 87 () — K(Hix(te) + v(te) — Hi&™ (8))

X (x(8) = &7 () — Kic(Hiex(ti) + () = Hik™ (1)) T}

fme
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1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK
KF
m Simplifying terms:
Pe = E[(U = KeH)(x(8) = 87) = Kiw(t)
% (0= KeHO(x(8) = £7) = Kiv(ao) |
= (I = KeH )P, (1 = KiHi) | + KR Ky
m One needs to find K, to minimize the previous expression.
However one cannot “minimize a matrix” (what does that
even mean?). However, since the diagonal of the covariance
matrix is the individual variances, one idea is to minimize the
trace of the matrix.
m The following mathematical relations help a lot:
OTr[ABAT O0Tr[AB
[ I _ 2BAT, OTr[AB] _ B
0A 0A o
—
21/33
1-D Kalnjan Filter examPIe
Estimation: Kalman filtering EinFe;aridllr&/elaErFENman iz
KFE 1l
m Using these relations:
Te[Pf] = Tr[Ki(Rk + HkPy HO)KJ ] — 2T [Ki Hk Py, |
m Thus:
oTr[P;" _ _
—[ k] — 2(Rk—|—HkPk HkT)KkT—2HkPk
0K
m Equating to zero:
T —yT\—1 —
Kk = (Rk—l—HkPk Hk) Hk'Dk
m Therefore we find an expression for the optimal Kalman gain
— T —yT\—1
Ky, = Pk Hk (Rk + HkPk Hk )
m And substituting in P;r to find the minimum we get
Pl = (I = KkHi) Py u
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1-D Kalman Filter example

Estimation: Kalman filtering Ein':egaridllr’l/elaErFEalman s

KF algorithm

m Summarizing the algorithm:
(Initialization): In t = tx, we start from X" (tx) and Pt (tx). If
k = 0 we take )?+(t0) =Xy P(_)'— = P.
(Propagation): For t € (tk, tk+1), use the process model:

£ = A%+ B(t)u(t), X(t)=%"(t)
P = A({)P+PAT(t)+ D()Q(t)DT(t), P(tx) = P*(t)

(Update): In t = tx41 we get z(txr1), call X (tk1) = X(tkt1)
and P~ (tk+1) = P(tk+1). Compute the Kalman gain:
_ _ -1 )
compute the a posteriori estimation:

$(tkp1) = R (tera) + Kiera(2(tern) = Hia 8 (tg)),
+ o i
'Dk+1 = (/- Kk+1Hk+1)’Dk+1'
Iterate for the next value of k. i
23/33
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Estimation: Kalman filtering EinFe;aridllr’l/elaErFEalman iz
About measurements
m Note: Measurements may change in the different t;'s (more
or less measurements).
m This is reflected in changes in H (it can even change
dimension).
4
L}
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1-D Kalman Filter example

Estimation: Kalman filtering E&n':e;arlidlnlw\;leeérlzllialman Al

Kalman Filter for nonlinear systems

m Next the EKF will be explained for nonlinear systems which
are continuous with discrete measurement.

m The main tool is to linearize around the estimation.
m Unfortunately convergence is not guaranteed.

m If the initial estimation is good, the errors are not too large,
and the measurements are of decent quality, it should work.
However it is very dependent on the quality of the matrices @
and R.

L]
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1-D Kalman Filter example
Estimation: Kalman filtering Ein;;arld“';\jgzﬁalman Ay
System model (nonlinear case)
m The model is more general:
x(t) = f(x,u,t)+ D(t)e(t),
Zx = h(Xk,tk)'+'V(tk),
Ele(t)] = E[v(t)] =0,
Ele(t)e’ (1)] = da(t—7)Q(1),
Elv(t)v’ ()] = diiRu
Ele(tr(1)] = 0,
X(to) ~ Nnx()?o, P()).
] . ] ~ __ Of(x,u,t)
m Define the matrices and vectors: F(X(t),t) = =5~ |
0z = z) — h()?k, tk), Hk()?k) = % .
X=Xk :
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1-D Kalman Filter example

Estimation: Kalman filtering E&n':e;arlidhr'w\;eérlzllialman Al

EKF algorithm

m The EKF is as follows:
(Initialization): In t = tx, we start from X (tx) and Pt (tx). If
k = 0 we take )?_'—(to) =Xy P(_)F = P.
(Propagation): For t € (tk, tx+1), use the (nonlinear) process
model:

= f()’?, u, t), )?(tk) :)?+(tk)

T X

(Updat ) Int = tx+1 we get Z(tk+1), call )?_(tk+1) = )?(tk‘Fl)
and P~ (tk+1) = P(tk+1). Compute

0Zk1 = Zkr1 — (X 1, tey1) and Hirr = Hi(K 5 tean).
Compute the Kalman gain:

1
Kk+1 'Dk+1Hk+1 (Hk+1Pk+1Hk+1 + Rk+1) . Then:

K (tep1) = R (tksr) + Kir102k41,
P/—(:-l — (I - Kk+1Hk—|—1)Pk_+]_-

Iterate for the next value of k.

fme
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1-D Kalman Filter example

Estimation: Kalman filtering Ein':e;arldlnlﬁ\;lezrlzialman Ay

Multiplicative Extended Kalman Filter (MEKF)

m This is specific for attitude estimation.

m The EKF can be altered to take into account that the
quaternions cannot be linearized in the standard way, but
rather using the quaternion error (in a multiplicative way).
Then one gets the MEKEF.

Assume one has gyros in the 3 axis, so that angular velocity
oﬁg/,\, is estimated, with white noise error of covariance Q.
This is assumed as continouous.

At instants t; one gets measurements of n directions in body
axes V8, so that v2 = CEvN and vB = 08 + ¢; for

i=1,...,n. € is Gau55|an whlte noise W|th covariance R;.

m With only measurements one could use TRIAD or the g
algorithm.

m With only gyros the estimation would be q= %q* qs.

fme
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1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

Multiplicative Extended Kalman Filter (MEKF)

m To linearize kinematics remember the quaternion error
g = g*dq, with

5q(a):; [ 2], arvt+axw=-0"a+wr.
VEr Tl | 3

m Thus one can study the covariance of the vector a which
represents the error:

P=-0"P+Pu*+Q, P(0)= Py

-
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Estimation: Kalman filtering Ei”,f?;d“rl‘\jaEVFEa'ma“ Filter
Multiplicative Extended Kalman Filter (MEKF)
m From the estimated quaternion § one can get éﬁ(c“])
(Euler-Rodrigues).
m Call 4z the discrepance between measurement and expected
measurement: 0z; = 05 — éﬁ(c“])vi’v. If everything was perfect
then dz; = 0.
m Measurement is not pefect: O,B = v,-B — €.
m Estimation is not perfect: CB=cE= CSC,G.
m Thus dz = v,-B — CBBVI-B — €.
m Remember that from the relationship between the error
quaternion and the small angles DCM: CBB =/ — a*, thus
6zi = —a*vB —¢; = (vB)*a —¢;.
m Thus we have n measurements of error in the form
0z; = H;a — €;, where H; ~ (OI-B)X. (NOTE: take only two
rows to avoid invertibility issues). The covariance of the o
measurement is R;. 2
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1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

Multiplicative Extended Kalman Filter (MEKF)

m Use the a priori (—) and a posteriori (+) notation. From
integration we had g~ with error a~ whose covariance is P~.

m With the measurements available from

6z1 Ry
oz=| : R =
52y Rn

m Using the measurements a* = a~ + K(z — Ha™), but since
the mean of the error is zero, a~— = 0, thus: at = K&z, where
K is the Kalman gain, computed as
K =P HT(HP~HT + R)~!. Covariance is updated as
Pt =P~ — KHP~.

. 2
m With a™ update §:6* = § xdg =4~ 1
i update §:¢* =4~ xdq =g *[ o 1 ——

Hy

H =

, .
Hp

m This procedure is iterated.

1-D Kalman Filter example
General linear Kalman Filter

Estimation: Kalman filtering EKF and MEEK

Multiplicative Extended Kalman Filter (MEKF)

m Summary. Initial data: §g, Py, Q, R;. One considers @
continuous. Ocassionally, one gets measurements and thus
can compute 6z; = VP — éﬁ(@)vi’v.

Initialize and compute g and P:

1

¢ = 9%, q(0) = qo,
P = —&*P+Po*+Q, P0)=Pry
At time t = t, one gets measurements, call G~ = G(tx)

and P~ = P(tx). Compute 6z, H, R. Compute
K=P HT(HP~HT + R)™!. Compute at* = KJz.
Update c}+=a—*5q=a—*[ a2+ ]\/ﬁ, Pt =P~ — KHP™.
Keep integrating the equations from the a posteri
estimations until more measurements arrive:

A 1 +
¢ = J9*d, q(ty) =q",

P = —o*P+PO*+Q, P(t)=P"

When new measurements arrive, go back to 2.

fme
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1-D Kalman Filter example

Estimation: Kalman filtering E&n':e;arlidhr'w\;eérlzllialman Al

Multiplicative Extended Kalman Filter (MEKF)

m Additional ideas:

Don't forget to renormalize §(t) if modulus goes away from
unity.

The covariance matrix P(t) must be symmetric. One can
“symmetrize” by forcing P = 1/2(P + PT), or compute only a
triangular matrix and impose the rest is the transpose.

The Kalman gain is optimal only for the linearized system. If
estimation has large errors, the filter may diverge.

One can and should include gyro bias in the estimation.

In practice it is not so easy to obtain @ and R so some
simulation /experiments are required.

m Other filtering algorithms exist. MEKF is “simple” and
flexible but not necessarily the best (this is a research field).

m In a lab we will test the MEKF with a cell phone.

fme
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Attitude control systems. Passive methods.

Attitude control

m The attitude control subsystem of satellites can be divided, in
general, in two families:

m Spin-stabilized satellites: using the gyroscopic effect/major axis
rule to mantain an inertial direction (which would be the major
axis). Cheap and simple but only the major axis can be
stabilized (unless wheels are used).

m Three-axis stabilized satellites: they use some kind of active
control to maintain the attitude with some orientation w.r.t.
some reference frame.

m Satellites can potentially use the two types of control,
depending on the phase of the mission (for instance
interplanetary probes).

m Another possible method is the use of gravity gradient, which

does not require control (in principle), but it is not very
accurate.

fme



Attitude control systems. Passive methods.

Attitude control

Another classification of attitude control methods is in two
kinds: active and passive.

m We interpret active in the sense of requiring additional use of
energy and some command logic (requiring some
computational power).

m Whereas a passive control system does rely on some
natural/physical effect to achieve stabilization (e.g. the major
axis rule).

Nevertheless these two classes sometimes overlap as for
instance to start the rotation of a spin-stabilized satellite (a
passive kind of stabilization) some kind of command and
energy contribution is required.

Thus all satellites in the end should have some kind of active
system.

o
\!_‘
3/14
Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device
Control of a spin stabilized satellite
m By the major axis rule, we know that a satellite spinning along
its major axis is stable; in addition, we know that its response
to external perturbations is a small nutation/precession
movement that would end up dissipating.
m A spin-stabilized stallite can have a rather simple control
system, with the following goals:
Initiate or increase rotation.
Increase the stability of the satellite.
Modify the direction of the rotation axis.
Slow down or completely stop.
m The first goal is trivial with thrusters or even considering the
initial spin due to the launch.
m The second goal can be achieved with nutation dampers that
increase energy dissipation and thus strengthen the major axis
rule (see Lesson 5 and 8).
m In the rest of the lesson we study goals 3 and 4. L]
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Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Modifying the direction of the rotation axis

m A simple way to modify the direction of a rotation axis is to
stop the rotation, modify the axis, and then start spinning
again. However, this procedure would be expensive and slow.
Another procedure, known as the “coning” manoeuvre, is
explained next.

m To simplify, consider an axisymmetrical spacecraft
(h = h =1 < I3) and consider we can perform impulsive
manoeuvres that instantaneously modify the angular
momentum, namely, apply an impulse Al by using thrusters.

m Let us consider the vehicle rotating only along axis 3 (major
axis) with angular velocity n, so that & and I are aligned.

m Remember (Lesson 5) when we studied the gyroscopic effect,
if we apply a perpendicular torque to the axis 3, we get a
precession and nutation movement of the body axis 3.

Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Modifying the direction of the rotation axis

m To simplify, consider that we can directly apply an impulse in
F, so that Ff = F,- + AT After that, the movement is free
again.

m In Lesson 5 we studied that the free movement of an
axisymmetrical satellite rotating around its simmetry axis was
a precession movement with fixed nutation, so that & rotates
describing a cone around the angular momentum r

m Thus, with this hypothesis of instantaneous change of angular
momentum, we simplify the nutation which also changes
instantaneously and stays constant, so we can use the exact
solution of the free movement of an axisymmetrical body.

fme
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Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Coning

m Consider that we want to displace the rotation axis an angle 6.

m Apply a AT so that T has an angle of 6/2 with the angular
velocity. This causes that the speed describes a cone around
the new I with angle /2, and when it has gone 180° around
the cone it has rotated a total angle 6 w.r.t. its former
position. Then apply a AT such that the final T is again
coincidgnt with the angular speed. Note that in the figure,
Hg =1T.

fme
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Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Coning

m From the figure: ATy = Al =T tan /2, so the total
AT coning = 2l tan §/2. The final angular momentum es equal
to the initial one (but in the intermediate position it is slightly

. r
larger: m).

m The time one takes to perform the manoeuvre is 7 divided by

the precession angular speed: t = %

.
m From Lesson 5 (free movement of axisymmetrical spacecraft)

_ mlcosB/2
thus t = —r -

¢ _ Isn _ I
" lcos@/2 T lcosf/2'
m During that time, the body would rotate w.r.t. its symmetry

axis (Lesson 5), an angle

. _ wlcosO/2 n(I—K) _ w(l—k)cosh/2
Y=tA= " [ A -

m In general this angle is not 180 degrees (unless
(I—1)cos6/2
3

= 1) thus one has to use a different set of
thrusters to get to the final position.

fme



Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Multiple coning

m An idea to reduce the fuel consumption (and break down large
angles of rotation of the spin axis) is dividing the coning
manoeuvre into m smaller manoeuvres, as seen in the figure.

m In each manoeuvre one needs to displace I' by an angle 6/2m
and wait 180 degrees.

m The total manoeuvre is Al coping = 2ml tan6/2m (if m is
large this tends to I, and thus this is worthy for large angles).

m The total time of manoeuvre is t = %Se/zm (if mis large

o
this goes to infinity, so there is a tradeoff). L}
9/14

Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Slowing the rotation: yo-yo device

m A yo-yo device is a single-use device that can be used to
totally or partially stop the satellite's spin. The mechanism
consists on two symmetrical masses fixed to the vehicle by a
joint that can be released. The masses are also attached to a
wire that is winded around the vehicle with a single point of
union, in a plane perpendicular to the rotation that has to be
stopped.

m To slow down or stop the rotation, one releases the masses.
The start to get away from the vehicle and the wire starts to
unwind until the stress reaches the point at which the wire is
fixed to the vehicle. Then the wire is also released. If the
length of the wire is well designed, then the vehicle has
stopped.

m Assumptions: Masses are considered points with mass m/2,
the wire is massless and not flexible, axisymmetrical vehicle of
radius R initially spinning around its symmetry axis with speed L]
no. 10/ 14



Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Yo-yo device

m Initial kinetic energy is To = % (/3n3 + mRzng). Initial angular
k!

momentum is [ = lkng + mR?ng. Defining K = 1 + e

can write Tg = %mR2Kn8 and Mg = mR?Kny.
m At a given instant the situation is as in the figure:

we

Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Yo-yo device

m In the figure, the angle has already been unwound by an angle
¢, and the vector r is the position vector of one of the masses
(since they are symmetrical it is enough to study one of
them). Given the assumptions, the wire should be tangent at
the point T. Use body axes i and fas in the figure.

m In this frame, ris written as
r= GT + TP = R(cos ¢i + sen ¢j) + Ro(sen ¢pi — cos ¢j).
m To find the kinetic energy and the angular momentum we
need the inertial speed. One has:

‘7:’._:|IN:.F‘ROT+(3X r

where & = nk.

= Now, F\ rOT = ORe(cos $i + sen (bf) y
W X r'= nR(cos ¢j — sen ¢i) + nR¢p(sen ¢j + cos ¢i).

fme
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Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Yo-yo device

Therefore
V=R ((¢+ n)¢ cos ¢ — nsen (b) i+ R ((¢+ n)¢sen ¢ + ncosqﬁ)f.

Computing the norm of the speed:

2

v = R\/<(¢+ n)¢ cos ¢ — nsen qb>2 + ((¢+ n)¢sen ¢ + ncos¢) :

Therefore: v = R\/(cb + n)2¢? + n?.

Thus, T =1 <l3n2 + mR2((¢ 4 n)2¢? + n2)>and using K,

T =2 (K2 + (6 + nfe?).

On the other hand the angular momentum of the masses is
'm = |Fx mv]. Computing the product we get

[m = mR?(n+ (n+ ¢)¢?).

Therefore _ _
['=hn+mR%(n+ (n+ ¢)p?) = mR?(Kn + (n + ¢)¢?).

Modifying the direction of the rotation axis: coning
Control of a spin stabilized satellite Slowing the rotation: yo-yo device

Yo-yo device

By conservation of kinetic energy and angular momentum
T = Tp, [ =Ty, thus reaching two equations

K(ng — n*) = (6+ n)?¢%, K(no—n) = (n+ ¢)¢?
Dividing the first equation by the second, we find
no +n = n-+ ¢, thus ¢ = ng, this is, the unwinding rate of the
wire is equal to the initial angular velocity of the vehicle.
Substituting this value in the second equation and solving for

¢, one can find the angle of unwound wire as a function of the
instantaneous angular velocity:

ngo—n
Qb a V K ng + n
If one wants that at the end n = 0, replacing this value, we
find ¢ = VK, and since the length of wire is | = R¢, we find
| = RV/K, which does not depend on the initial speed!
One can find an adequate length of wire for any value

n € (—no, ng).

13/ 14
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4
L}
control systems
Passive control systems can allow for some perturbation
rejection and give stability enough for some applications.
However, particularly at the beginning of a mission, all
spacecraft need to perform:
m Slew maneuvers
m Adjustments of spin speed
m Stationkeeping maneuvers
Thus, in many cases, one needs an active control systems
(active in the sense of requiring additional energy to work as
well as some kind of logic).
In missions requiring high accuracies, that active control
system will be the primary system. Then, one speaks about
three-axis stabilized attitude control.
In other cases, it may be a secondary system, which only
requires occasional use. -
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Actuators

m Before explaining the algorithms for attitude control, it is

important to quickly review the actuators that are used to
modify the attitude of a spacecraft (through some term in
Euler's equations). The different types of actuators are:

m Thrusters: based on expelling mass. Since mass is finite these
devices have limited use. Known as Reaction Control Systems.

m Reaction wheels and inertia wheels, with changing angular
speeds, as seen in Lesson 5.

m Control Moment Gyroscopes (CMG): they are as inertia wheels
(a disc-like device spinning at large speeds), which, instead of
modifying their angular speeds, tilt their axis of rotation
through motorized gimbals, thus quickly modifying their
angular momentum.

m Magnetorquers, which use the magnetic field to produce a
torque.

m Structural elements for passive control: booms, yo-yo devices,
nutation dampers... not covered here.

It is normal to have several kind of actuators in a spacecraft L}
for redundancy and given that they have different properties. /4

Momentum exchange systems

Active control systems .
v Y Reaction Control Systems

Three-axis stabilized attitude control

Satellites with three-axis stabilized attitude control can have
any kind of pointing (inertial, orbital, some ground target...)
Objectives may be two: either to keep the satellite (in the
presence of perturbations) in a fixed attitude (a simple
regulation /stabilization problem) or to perform a slew
maneuver (which maybe to track a target or just modifying
the attitude).

There are two main families of actuators to achieve these
goals: reaction/inertia wheels /CMGs (also known as
momentum exchange systems) and RCS. Magnetorquers can
also partially perform this but it is a bit more difficult due to a
direction without actuation: we will not consider them.

We will start with the first goal, since the second is more
difficult, for both reaction/inertia wheels and RCS.

How to perform slew maneuvers will also be consider but only
for reaction/inertia wheels. L1
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Momentum exchange systems

m For the highest degree of precision
in attitude, manoeuvrability and
stabilization, and for any
orientation independent of the

inertia tensor, one can use
momentum exchange systems B, (roll)
which use reaction wheels, inertia \Q/mch
A ; Momentum
wheels and/or CMGs, based on Q. (pitch)_—— Wheel
- \ .
conservation of angular EE=]  Conver
Roll Electronics
momentum. Reaction \

) Sun Sensors
m Nevertheless these are expensive

system, with low tolerance to
failures, and require an auxiliary
system (thruster or magnetorquers) l
to unload momentum and thus

4
|
avoid saturation. -
5 /40
Active control systems ll\?/leC;TteigEu?o:ffc:agfset:zws:ems
Spacraft with three reaction wheels
Spacecraft
Fig. 6.10 Gyrostat in a circular orbit.
m Assume the situation in the figure, with three reaction wheels
in the three principal axes:
hin + (B — b)wws 4+ by + wohs —wshy = M
hawy + (h — B)wiws + ho +wshy —wihs = M,
lzws + (/2 — Il)(,Uzwl 4+ h3 —worhy +wihy, = M;s
m The angular momentum of wheels is denoted as h; = wg, Ir..
These are control variables! i



Momentum exchange systems

Active control systems -
Y Reaction Control Systems

Spacraft with three reaction wheels

Fig. 6.10 Gyrostat in a circular orbit.

m Remember also from Lesson 5 that once we know the speed
we need for the wheels, it can be achieved by using the
wheels’ internal electrical motors.

m The model from Lesson 5 was:

lriin +h = A
IroWn 4+ hy = s
Ir3ws + /73 = A

where J; is the torque of the electrical motors. This is in the
end what we can really actuate directly.

Momentum exchange systems

Active control systems ;
v Y Reaction Control Systems

Spacecraft with three reaction wheels

m Let us now use a nomenclature in which we denote the effect
of the wheels with the letter u by following the classical
control nomenclature:

hay + (5 — h)waws = up + M
hay +(h — Bwiws = w+ M
Bz + (b — h)wawy = w3+ Ms
where
m = —h —wyh3 +wzhy
us = 7i12 — w3hy + wih3
u3 = —h3 — wihy + wohy

This is, 0 = —h+ h*G
m In addition we have the kinematic differential equation

.1

CIZECI*CIQ

He

e

/40
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Regulation: Stabilizing a given attitude

m For regulation of a fixed attitude, the problem is stabilizing
the values q(t) = grer and w(t) = 0. In addition, we assume
that we initially start close to that value of the state.

m Thus, we linearize Euler's equations around w(t) = 0. Ignoring

perturbing torques (Question: what could we try to do to
mitigate perturbing torques?):

d 5(,01 0O 0 O 6(,«)1 1//1 0 0 uy
d_ dwo = 0 0 O dwo + 0 1//2 0 uo
B s 0 0 0[] duws 0 0 1/h U3
where 7 = —h + h*6&

m Notice that if we find & solving the control problem, we could
find the corresponding values of h by solving the differential
equation (however: physical limitations, such as saturations or
rate limits could pose a problem).

9/
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Stabilization

m On the other hand, the attitude quaternion should be close to
the reference attitude (if we start close to the attitude gef).

m By following Lesson 2, then we can write g = g,er * 0q, Where
grer is the desired attitude and dq the attitude quaternion:

0= 7 | 5]

m From Lesson 4 the relationship between 3 and the angular

velocity is 3 ~ 0W + & X Wyef, Since Wrer =0 — 3 =~ 0.
m Thus:

d ai 1 0 O 5CU1
d_ an = 0O 1 0 (5(4}2
Bl oa 00 1 Stws

m Combining the equations for the error in angular velocity and
attitude we find a full description of the error of the system, in
the next slide.

10/ 40
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Stabilization

m System description:

Swr 00 0 0 0 O Swr 1/h 0 0
Swo 00 0 0 0 O Swn 0 1/b 0
d| 6ws | | 0 0 0 0 0 0 Sws 0 0 1/h u1
7 a 1 0 0 0 0 0 a4 |t o 0 0 2
as 0 1 0 0 0 O an 0 0 0 3
a3 00 1 0 0 0 a3 0 0 0

m Call X to the variables describing the state, this is a classical

way to write a linear system
X = AX + B

m We can use “our favorite linear method” to find a (linear)
control law & = KX, which then later one needs to transform
in required velocities for the wheels by solving the angular
speed that relates 7 with the angular momentum of the
wheels, and then later transform that into commands for the
wheels’ motors.

m A possible method is LQR (linear quadratic regulator) with S

S

“infinite horizon”. Another is pole placement. 11/ 40
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The LQR method

m Given _
X = AX+ Bu

find a control law i(t) (with feedback: & = KX) minimizing:
J:/ (XT(£)QX(t) + " (t)Rii(t))dt
0

m Problem posed and solved first by Rudolph Kalman!

m Assumptions: @, R symmetrical and @ > 0 (definite
semidefinite positive, which is equivalent to all eigenvalues
positive) and R > 0 (semidefinite positive, which is equivalent
to all eigenvalues non-negative).

m Additional assumption: The system is“controlable”. Meaning
that "is is possible to solve the problem” (it is easy to solve
control problems that cannot be solved. For instance
X] = U1, Xp = xp.) Mathematically a problem is controllable if
C =[B AB A’B A" 1B] is full row rank, where n is the o

number of states. |s this verified in our case? .
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The LQR method

The control law that solves the problem is
0= Kx

where the gain K is found as follows
Find the matrix P that solve the so-called “algebraic Riccati
equation”:
Q+ATP+PA—-PBR'BTP=0
for instance with the Matlab command “are” (which requires
the Control Systems Toolbox) P=are (A,B*inv(R)*B’,Q) ;
The gain is then K = —R~!BTP
The Riccati equation is solvable only if the system is
controllable.
Optimal control should guarantee a good behavior of the
system, but does not take into account the actuator’s
saturation or other nonlinear behavior. The choice of @ and R
greatly influences the quality of the controller (more
conservative or more aggresive).

@
L
—

13/40
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The LQR method

m To implement a control law

U= Kx

let us first remember the definition of X.

AS Wyer = 0, the first three components are the real value of
angular speed.

The next three components are a, from which one extracts
the quaternion error. It is easy to see that
d 5_)
a= 2—q
dqo
which comes from dq = g7, * q(t).
(_)nce the control & is computed, one needs to solve

h= —+ h*5@ to find out how to solve the angular
momentum of the wheels.

fme
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Slew maneuvers and tracking

m We have studied in Lessons 2 and 4 how to compute a given
angular velocity to maneuver from a given attitude to another.

m Remember that, given g; and gr and a certain time T it was
required to find gr = q; * gr, extract Euler’s axis € and angle

0, and then & = éw(t), where w needs to verify fOTw(T)dT.

m In addition, we can impose additional conditions such as
starting and finishing at rest, for instance by imposing a shape
to w(t) of the form w(t) = At(t — T) (Exercise: find A).
Other conditions could be imposed.

m Once we find the required angular velocity, if we substitute it
in Euler's equation we can find the control. This is sometimes
called “open loop control” or feedforward control, and does
not use feedback.

fme
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Slew maneuvers and tracking

m If we call the found angular velocity &,ef(t), and the
quaternion generated by that angular speed the reference
quaternion g,r(t), we can also find a “reference control”
(feedforward control) ier as:

Uref1 = Ilwrefl + (I3 - I2)wref2wref3
Uref2 = hWrera + (ll - /3)Wref3wref1

Uref3 = /3wref3 + (/2 - Il)wreflwref2

m As before from this i, we can find the required speed of the
wheels and from that speed of the wheels, the internal
electrical motors’ torque that would be needed to perform the
maneuver.

m What would happen if we try just to apply this feedforward
control without any feedback mechanism?

m The problem of following the reference profile &yef(t),qrer(t)
is sometimes called the tracking problem.

fme
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Tracking

m One possible idea to solve tracking is as follows: linearize
around the reference profile. Compute an additional feedback
controller around the reference profile that is added to the
feedforward control (so we have feedforward-+feedback) so we
close the loop and guarantee stability (at least with respect to
small errors and perturbations) so that the system is kept on
the desired reference profile.

m Thus let 0600 = & — &ref, 00 = U — Uy, and use the quaternion
error as previously defined. The linearized equations are:

low + (/3 — /2)(wref25OJ3 + 5w2wref3) = du + M
hows + (h — B)(wrer3dwr + dwswrer1) = Oup + Mo
Iéws 4+ (h — h)(wref1dw2 + dwiwrer2) = duz + M3

and for the attitude error:

.—»N — X =
a~ 0w — BRPE)

Momentum exchange systems

i stems -
PEDE el S Reaction Control Systems

Tracking
m System description ignoring perturbing torques:
I —1 I — 1
Swr 0 2/1 3 Wref3 2/1 3 Wref2 0 0 0
Sws 3 rers 0 B wrert 0 0 0
Sw =1 I —1
I 313 = 1 I Wref2 i 2 Wrefl 0 0 0 0
ar 1 0 0 0 Wref3 —Wref2
as 0 1 0 —Wref3 0 Wrefl
0 0 1 Wref2 —Wrefl 0

dup
Sup
dus

coocooo >0
=
coo>~oco
Ry
w
| — |

m Classical description as before
X = A(t)X + B(t)od

m Now A and B are time-varying: cannot use the LQR method
as before.

m We need more advanced methods, such as LQR (linear
quadratic regulator) with “finite horizon”.

fme
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Tracking with finite horizon LQR

m Given

X = A(t)X + B(t)dd
find du(t) with feedback (du(t) = K(t)x) minimizing

= /0T(;(T(t)Q(t))?(t)+5L7T(t)R(t)5ﬁ(t))dt+)?T(T)Qend)?(T)

m Assumptions: @, R, Qeng symmetric and Qeng, @ > 0, R > 0.

m Since it is a finite horizon controller, the controllability
hypothesis is not required, but there could be problems if
there is a loss of controllability of the system.

fme
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Tracking with finite horizon LQR

m The control law that minimizes J is as follows:
ou = K(t)x
where the gain K(t) is found as follows:

Find P(t) that solved the so-called “Riccati differential
equation”:
—P=ATP4+PA-PBR'BTP+Q, P(T)= Qend
for instance using ode45 in Matlab.
The gain is then K(t) = —R™1BT P(t)

m Riccati’s differential equation is always solvable! However, it
cannot be solved in real time, because it needs to be solved
backwards in time (there is a final condition instead of an
initial condition). Thus one solves it in advance and stores the
values of K(t).

m As before: Choices of Q and R (also Qeng) determines the .

quality of the controller (more conservative or more aggresive). =
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Tracking with finite horizon LQR

m To implement the control law
ou = K(t)X

one needs to remember the definition of X.

B As Wyef # 0, the first three components are W — Wyef.

m The second three components correspond to 3, that need to
be extracted from the quaternion error. Remember that

oq

dqo
for which we need to compute §q = g, * q(t).

m The final control is & = U,er + 0.

] Rememb_er that once  is known, at each instant is required

a=>2

to solve h = —if + h*8& to know how to modify the angular
momentum of the wheels and therefore their internal torque .
Ji. L
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Nonlinear control

m “Nonlinear control” comprises a wide range of techniques that
do not require the use of linearization.

m Consider the following problem. Starting from ¢(0) and g(0)
we want to reach the identity attitude at rest. It is enough for
us if the system “tends” to that state, this is, our goal is that
&(t) = 0y qo(t) = 1, g(t) — 0 when t — oc.

m This is, we make “asymptotically stable” the equilibrium
Ww=0,g=1, g=0.

m If this is true, for any initial condition, then one says that the
equilibrium is globally asymptotically stable.

m Notice that the target attitude could be any, just by making a
rotation of the inertial frame as ¢’ = ¢’ * q.

m We solve this problem with the so-called “Lyapunov function
technique” . °
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Nonlinear control

m Let us start by remembering than since we don't linearize,
now our system is the original one, writing as before the
control terms in the equations.

m First, the angular velocity equations:

b — 1
o o= 2 3wzwaJrﬂ
h h

I3 — |
Gp = = 1Cd3wl—i-2
b I

i — |
= - 2w1w2+£
3 h

fme
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Nonlinear control: Lyapunov functions

m Can we find uq, up and w3 such that the equilibirum & = 0is
globally asymptotically stable?

m The technique of Lyapunov functions is as follows. Let V be a
regular function (continuous, differentiable) that depends on

the state (in this case, the angular velocity and quaternions)
such that :

m It is always positive for any value of the states, except when the
state is zero; and for zero, it is zero (this is, positive definite).

m The time derivative of V is definite negative (this is, negative
for any value of the state except zero).

m Then it follows that the origin (zero value of the state) is
asymptotically stable (this method can be understood by
looking at the level curves of V).

m If in addition the limit of V when the state goes to infinity
also tends to infinity, the result is global.

fme
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Nonlinear control: Lyapunov functions

m The technique of Lyapunov functions is as follows. Let V be a
regular function (continuous, differentiable) that depends on
the state (in this case, the angular velocity and quaternions)
such that :

m It is always positive for any value of the states, except when the
state is zero; and for zero, it is zero (this is, positive definite).

m The time derivative of V is definite negative (this is, negative
for any value of the state except zero).

m Then it follows that the origin (zero value of the state) is

asymptotically stable (this method can be understood by
looking at the level curves of V).

m If in addition the limit of V when the state goes to infinity
also tends to infinity, the result is global.
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Nonlinear control: Lyapunov functions

m Let us see how this works out for our first case with only
angular velocity. Consider:

2 2 2
_ %1 w2 “3
V_l12k -l-/22k +/32k

m We see that the first conditions is fulfilled if k is a positive
constant (we will define it later).

m Taking derivative:

v, — llw1:11 N I2w2:12 N I3w3:13

m Substituting the derivatives:

wi((k — B)waws + u1) N wa((B — h)wswy + u2) N w3((h — h)wiws + u3)

V, =
¢ K K K

fme
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Nonlinear control: finding the control

m Simplifying
wiuy wa U wsu3
Vt —
k k k
m Let us choose now: U1 = —ciwi, Ur = —Cwo, U3 = —C3W3,

where ¢; is a positive constant. Replacing this in V4:

clwf + ngg + C3w§

Vt — k

m Thus by the technique of Lyapunov, it is proven that & = 0 is
globally asymptotically stable. Note that the value of C; and k
does not matter as long as they are positive, but the value of
C; will influence the performance of the control law.

Lt
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Nonlinear control: including quaternions
m Let us consider now the full system including the quaternions
: b — |
b = —wws + -
I h
I3 — 1
dJQ = 3 1w3w1 + 2
b b
h—1
w3 = L 2w1W2%-H§
ls ls
_ 1
do = —3 (qrw1 + Gaw2 + q3ws)
_ 1
a = 3 (Gowr — g3w2 + Gows)
_ 1
@ = 5 (gsw1 + Gow2 — q1w3)
_ 1
B = 3 (—qow1 + qiw2 + qows)
o
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Nonlinear control: La Salle's Theorem

m Can we find values of vy, up and u3 guaranteeing that the
equilibrium & = § =0, go = 1 is asymptotically stable?

m Unfortunately Lyapunov is not enough!

m We also need "La Salle’s Theorem”:

m Let V be a Lyapunov function such that its derivative is
semidefinite negative (this is negative or zero). Let us call E
the set of states verifying V = 0.

m Let M be the largest invariant set of the system contained in
E.

m Then the state goes to M when time goes to infinity.

m What is the invariant set of a system? Is a set such that if the
initial condition starts in the set, the state stays in the set for
all t.

fme
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Nonlinear control: finding the control (again)

m Use the Lyapunov function

2 2 2
Wy

W w
V=h=24h24h= — 12 +¢2+ g2+ g2
12k+ 22k+ 32k+(QO )*+ a1+ a3+ a3
m We see that the first condition of being a Lyapunov function
is verified ( go has been displaced so that gy = 1 is at the
origin).
m Taking a derivative:
wld)l wzwz (,U3(.<.)3

p —i—/zk +/3k

Vi = & +2(g0 — 1)go + 2191 + 2G2G2 + 2g3G3

m Substituting:

w1((h — B)wawsz + uy) N wa((h — h)w3wy + u2) N w3((h — h)wiws + u3)
k k k

—(q0 — 1) (q1w1 + qaw2 + q3w3) + g1 (Qow1 — G3w2 + qaw3)

+q2 (q3w1 + gow2 — qrw3) + g3 (—qaw1 + qrwz + qows)

Vi =

fme
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Nonlinear control: finding the control (again)

m Simplifying

wiu wo Uop w3 us
Vi = 1kl+ P + P + (qrw1 + qaw2 + gsws)

m Let us choose now: u; = —(kq1 + ciwi), ux = —(kqga + cow»),
u3 = —(kgs + csws), where ¢; is a positive constant.
Substituting:

wi(kqr + awi)  wa(kgs + cwz)  ws(kgs + c3ws)
B k N k N k
+ (qrw1 + qowr + g3w3)

clw% + Czwg + c;;w%

k

Vt —

m We cannot apply Lyapunov directly, we need La Salle!

m First of all, the set E is just w; = wp = w3 = 0 for all t.

4
3,
31/40
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Finding the invariant set M
m Replace w1 = wy = w3 = 0 in the syste for all ¢ (in particular
this implies that the derivatives are zero):
= 04wy
0 = 0+ uw
0 = 0+ us
G = 0
a1 = 0
g = 0
g = 0
m Thus the invariant set verifies u1 = up = u3 =0, and g
constant.
m Since 11 = —(kq1 + Clwl), up = —(qu + ngz),
u3 = —(kqs + czws3), we obtain g1 = g2 = g3 = 0. L}
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Final stability result. Winding phenomenon.

m Finally, since the quaternion must be unity, we get qop = +1.
Since go = 1 is the origin of the Lyapunov function, it
becomes stable (in fact gg = —1 becomes unstable; which is a
problem since it is the same point, this is called the winding
phenomenon).

m If one uses negative k in the control law then it can be
similarly shown that gg = —1 becomes stable and gg =1
unstable. This can be verified by switching the Lyapunov

function to
V — ,W% ,Wg /W§ 1)2 2 2 2
= —h5 T hy e~ 3ﬂ+(%+ )"+ a1+ g+ a3
m If one fixes k = ko - sgn(qp) then one stabilizes the “closest”
equilibirum.
m Very interestingly: in the control law there are no inertias in
the formulas, thus we don't need knowledge of them. This is
an universal control law. However one needs to know the state

(& and g) to be able to apply the control law.

fme
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Reaction Control Systems (RCS)

m The so-called “propulsion logic”
=y establishes when thrusters are
fired and if a small tolerance of
attitude/angular velocity can be
accepted.

m Normally it is a combination of
“dead zones” (no actuations) and
hysteresis (to avoid the repetitive
firing of thrusters exhausting all
fuel).

m Thrusters usually are actuators
“all or nothing”, thus always
acting in saturation.

m In situations that require high/fast
manoeuvrability one can use a
Reaction Control Systems or RCS,
using a set of thruster distributed
on the vehicle to quickly and m This means that RCS are

efficiently modify attitude. intrinsically nonlinear, but =
discontinuous as well. 34/ 40
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Reaction Control Systems

For RCS, we can model the effect of the thrusters as torques

in Euler's Equation.

We are only going to consider the regulation problem
(stabilization of an attitude to which we are already close).
Linearizing and taking Euler angles in the sequence 1-2-3 with
small angles, and combining the linearized kinematic and
dynamics, the system to be controlled becomes:

h6,
by
l503

u17

uz,

R

us,

Next we design uy, up and us to stabilize the system; each axis
is independent of one another. Classical methods of control
(or Lyapunov) cannot be used for thrusters since they cannot
give a variable value (a control law such as u = Kx does not
work). This is the only options are u = 0, upax, upmin, Where
upyn should be negative (we can assume to simplify

4
upiv = —upax ). We will use more explicit/geometrical ideas. &
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Control with thrusters

m Consider a single axis, then &¢ = u (where u is redefined by

dividing by inertia), with initial conditions &g and ayp.
Integrating the differential equation:
#2

a — ag = tu, oz—ozo—tézOZEU

m If one removes time from the system:

. . . . . 2
o\ — a— o
o — ag = o . 0) | 2uo)

m This is the equation of a parabola in the phase plane (9—9),

whose shape will depend from initial conditions and the

choices of control (v =0, upax, —umax). If u =10 time

cannot be removed and the system’s behavior is reduced to
moving along the segment a — ag = tayg. -
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Control with thrusters

m Example of parabolas with zero initial condition (arrows
indicate how the system behaves):

O A
u<0\\ //—' u>0
>
/A/ ’

m To move we need to use the parabolas:

(3(1;

. \

M>0 with Upax
_=M>0 with u<u,,

‘\:a
<0

start

M i
37/40
. Momentum exchange systems
G e SR Reaction Control S)g/stez]s
Control with thrusters
m First idea: u = —upaxsign(a). The result is a limit cycle:
Ad
FA
b '(X
m To avoid oscillation: v = —upaxsign(a + k&), with k > 0.
The result: .
(XA
N .
X >
\ “
. . 1 %)
line 0c=—ioc \!\
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Control with thrusters

m To arrive in a finite time: u = —upaxsign(a — 5—~—c|d|)

) 2upmax
(exercise). The result:
\la
Switching linew (0/)) o

m If one fixes a minimum time and wants to minimize fuel
(exercise):

o

He

e
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Control with thrusters: additional considerations

m The procedure just explained cannot be applied if one cannot
neglect nonlinearities (gyroscopic couplings make necessary
the use of all the axis simultaneously). Then one needs to use
the full theory of optimal control.

m |n practice it is enough that the solutions converge close
enough to the origin (to avoid switching on the thurster too
often). This requires the use of dead zones and hysteresis.

fme
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