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Introduction I

The great majority of spacecraft have instruments or antennas
which must point to one direction. For example:

Space telescopes (Hubble).
Communications satellites must point their antennas.
Solar panels must maximize their solar exposition.
Photography cameras must point to one location.
Radiators must be pointed to deep space.
The thrusters of a spacecraft must be correctly aligned.
Other scientific instruments and sensors.

In addition there are other kinds of requirements:
Space telescopes (Hubble).
Target tracking.
Forbidden directions (e.g. the direction to the Sun for sensitive
optics).

A spacecraft’s orientation (with respect to another frame of
reference of interest, e.g. inertial or the orbit axes) is called
attitude.
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Introduction II

The subsystem responsible for estimating and controlling the
attitude is the ADCS (Attitude Determination and Control
System) whose basic functions are:

Determine the current or instantaneous attitude, from the
measurements of the sensors and the knowledge of the
previous attitude (estimation problem).
Use the available actuators in order to stabilize the attitude
and correct possible deviations with respect to a desired
attitude (control problem).

Other possible functions:
Generate attitude maneuvers (slew maneuvers), for example, in
order to go from an initial attitude to a desired final one
(attitude transfer problem)
Track a target (tracking problem).
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Under the assumption of a rigid body,
attitude is established by specifying the
orientation of the body axes with respect
to other axes of interest.

For example, the orbit axes as shown in
the figure, whose definition depends on
the specific orbit.

The relationship between two frames of
reference can be represented in several
ways: using matrices, Euler angles or
other mathematical objects.

Attitude kinematics is a combination of relationships (in the
form of di↵erential equations) between the spacecraft’s
angular velocity, ~!, and its attitude, represented by any of the
mathematical objects previously mentioned.
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Attitude Dynamics

Attitude dynamics relates the spacecraft’s angular velocity
with the moment of forces acting on it, and is based on the
Angular Momentum Theorem; the resulting di↵erential
equations are known as Euler’s Equations.

The movement of a body in torque-free precession (moments
equal to zero) is the most simple solution of these equations,
and even explicit in the axisymmetric case; it is a precession of
the rotation axes around another fixed axis.

A body in rotation that is subject to a constant moment does
not react “intuitively” but rather su↵ers perturbations in its
initial rotation, causing precession and nutation movements.

This resistance to perturbing moments is named gyroscopic
e↵ect. It is the basis of the spinning top’s behavior.
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For the body in the figure, I1 = Ix , I2 = Iy , I3 = Ix are
the principal moments of inertia (given the shape of
the body). In addition I1 > I2 > I3 because of the
apparent dimensions in the figure, so the x axis is the
major axis of inertia, the y axis is the intermediate
one, and the z axis is the minor axis of inertia.

It can be shown that if a rigid body rotates around
the major or the minor axes, these rotations are stable
(they are actually neutrally stable: when the rotation
is disturbed, the perturbation does not increase).

However if the rotation is around the intermediate axis, this
rotation is unstable (an initial perturbation would increase and
the instantaneous axis of rotation would get away from the
intermediate axis).
These results change in the presence of dissipation of energy
(which always exists in real life): The minor axis is unstable if
there is dissipation of energy (Major Axis Rule). 6 / 14
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Sputnik vs. Explorer I
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Sputnik was launched in 1957

The satellite was stabilized by rotation
around its major axis.

NASA engineers were not conscious of
this fact, neither of the major axis rule
(which cannot be deduced from a rigid
body model).
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Explorer I was launched in 1958,
“stabilized” by rotation around
its minor axis.
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Sputnik vs. Explorer II
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Stabilization around the minor axis
(red) did not work.

In a few hours Explorer 1 started to
spin around its major axis (green) with
a quite chaotic movement, making
communication with Earth di�cult.
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Telstar I (the first
communications satellite) was
launched in 1962.

It was stabilized by rotation
around its major axis,
spinning at 200 RPM.
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Major Axis Rule: Exceptions

The minor axis is unstable, but the
characteristic time of the instability is
slow (hours).

Stabilization is typically achieved by
rotation around the minor axis in the
launch vehicles’ later stages, before
firing these stages.

The gyroscopic e↵ect induced
by the rotations considerably
reduces errors due to
misalignment between the real
and ideal axis of thrust.

After ejecting the final stage,
this rotation is typically
stopped, for example with a
yo-yo mechanism, or waiting
long enough so that the
dynamics transform the rotation
to a major axis spin.

Example: Mars Odissey.
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E↵ect of a wheel in rotational dynamics
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A wheel, flywheel or rotor placed inside or
outside the vehicle, and which is in rotation,
produces a stabilization e↵ect due to the
gyroscopic e↵ect it provides to the ensemble.

In addition, the intermediate axis, or even
the minor axis in presence of dissipation of
energy, can be stabilized with a wheel.

Moreover, rotations (maneuvers) can be performed as follows:
if the wheel is accelerated in one direction, in the absence of
(significant) external moments, the vehicle would rotate in the
opposite direction due to the fact that the total angular
momentum cannot change.
The most extreme example of this principle is a CMG (control
moment gyroscope); it consists of a wheel with high inertia
and large fixed velocity but with moving axes. 10 / 14
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Examples of Spacecraft with flywheels!"#$%&'()(*'+,$-.,/$0#,#*1
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Navstar satellite (GPS).

4 flywheels spinning at several
thousands of RPM.

Auxiliary system: RCS (hydrazine).
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DSP (Defense Support
Program) satellites are part of
the USA early warning system.
They have infrared sensors.

Stabilized by rotation with a
flywheel.

11 / 14

Introduction to Attitude Dynamics
Basic concepts
Stability and Control

Gravity gradient (G2)
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The non spherical shape and mass
distribution of a spacecraft produces the
so-called gravitational torque, while it travels
in its orbit, since F = µm/r2.

It can be seen as a “restorative force” which
makes the spacecraft rotate as a pendulum,
around its equilibrium position.

“G2” can be used for stabilization; however, it
barely provides stability in yaw.

The Moon is “stabilized” by G2.

The Polar BEAR satellite, stabilized by gravity,
inverted its equilibrium position.
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Three-axis stabilized systems

Stellites with an ADCS system that totally controls their
attitude are known as three-axis stabilized satellites.

For example, the Hubble telescope’s attitude
control system is one of the most accurate
systems ever built by man.

The principal telescope has to be able of
maintaining its position respect to a target with
an accuracy of 0.007 arc seconds (a human hair
width seen from a distance of 1.5 km).

A golfer with that accuracy (and the required strength) would
be able to achieve a “hole in one” in a golf course in Malaga
executing the exit from Moscow, 19 out of 20 times!

The Hubble performs its three-axis attitude control using
flywheels.
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Agile satellites

Earth observation satellites have considerable
attitude control requirements.

The so-called “agile satellites” are prepared to
obtain multiple images or even 3D images
(taken twice from di↵erent angles).

For example, the Pleiades constellation (2
CNES—French space agency—satellites) has
the capacity to obtain images with a resolution
< 1 m. from any point of the Earth!

In order to take advantage of the optical
capabilities, a large accuracy in the attitude
control/determination is required, but also
speed in the maneuvers; this is achieved with
CMG (control moment gyros), star trackers and
FOG (fiber optic gyros) of high resolution.
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Director Cosine Matrix

Euler Angles

Euler’s angle and axis. Quaternions. Other representations.

Spacecraft Attitude

The attitude of a Spacecraft is its orientation with respect to
a given reference frame (typically, inertial or orbit axes).
Under the hypothesis of the spacecraft being a rigid body, it is
enough to know the orientation of the body axes (i.e., a
reference frame fixed to the spacecraft). Thus one needs to
study the orientation of a reference frame w.r.t. another.
The set of orientations between two frames is denoted as
SO(3): the special orthogonal group of dimension 3.
Aircraft classically use Euler angles (yaw, pitch, roll). For
spacecraft there are several alternatives (also applicable to
aircraft), with their corresponding advantages and
disadvantages:

Director Cosine Matrix (DCM)

Euler Angles (12 possible sets)

Euler’s Angle and Axis (a.k.a. Eigenaxis)

Rotation vector

Quaternions

Rodrigues parameters (a.k.a. Gibbs’ vector)

Modified Rodrigues parameters 2 / 30
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Director Cosine Matrix

Euler Angles

Euler’s angle and axis. Quaternions. Other representations.

SO(3) Representations: Main features

Each representation has advantages and disadvantages, as will
be seen.
Each representation is defined by n parameters.

If n = 3 the representation is minimal (since there are 3
degrees of freedom). However, minimal representations always
have singularities.
If n > 3 then there will be n� 3 constraints for the parameters.

For a given representation, it might happen that two di↵erent
values of the parameters represent the same physical attitude.
Then, it is said that the representation has ambiguities. The
set of parameters that needs to be eliminated to avoid
ambiguities is called the “shadow set”.
In this lesson we study:

How to switch between di↵erent representations
How to compose attitudes for each representation when there
are more than 2 reference frames
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Director Cosine Matrix

Euler Angles

Euler’s angle and axis. Quaternions. Other representations.

SO(3) Representations: Main features

Another interesting feature is the capacity to generate smooth
“paths” of attitude, this is, a continuous set of rotations to
get from an initial attitude to a final attitude.

One can talk about passive and active interpretations between
reference frames.

In the passive representation (a.k.a. “alias”) one transform
the reference frames (i.e. their basis vectors). Then, vectors
also transform since the reference frame change. However,
they do so in the opposite way. For instance, if the x-y axes
rotate 45o (along the z axis), a vector would rotate 45o in the
opposite direction (along the -z axis). This is the preferred
interpretation. Plot it!

The active interpretation (a.k.a. “alibi”) looks at the
transformation of vectors (therefore reference frames
transform in the opposite way).
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Director Cosine Matrix (DCM) I

Let S and S’ be reference frames, respectively, with unitary
basis vectors (~ex , ~ey , ~ez) and (~ex 0 , ~ey 0 , ~ez 0). The orientation
(attitude) of S’ w.r.t. S is totally determined by the change of
basis matrix CS 0

S . This matrix allows, given any generic vector
~v expressed in the basis of S as ~vS , to change its basis as
follows: ~vS

0
= CS 0

S ~vS . Denote:

CS0
S =

2

4
c11 c12 c13
c21 c22 c23
c31 c32 c33

3

5

Note: ~eS
0

x = C S 0
S eSx = C S 0

S [1 0 0]
T
= [c11 c21 c31]T .

Therefore:

~ex 0 · ~ex = (~eS
0

x 0 )
T~eS

0
x = [1 0 0][c11 c21 c31]T = c11.

In addition:

c21 = ~ey0 · ~ex , c31 = ~ez0 · ~ex

c12 = ~ex0 · ~ey , c22 = ~ey0 · ~ey , c32 = ~ez0 · ~ey

c13 = ~ex0 · ~ez , c23 = ~ey0 · ~ez , c33 = ~ez0 · ~ez
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Director Cosine Matrix (DCM) II

Thus:

CS0
S =

2

4
~ex0 · ~ex ~ex0 · ~ey ~ex0 · ~ez
~ey0 · ~ex ~ey0 · ~ey ~ey0 · ~ez
~ez0 · ~ex ~ez0 · ~ey ~ez0 · ~ez

3

5

By a similar reasoning:

CS
S0 =

2

64
~ex0 · ~ex ~ey0 · ~ex ~ez0 · ~ex
~ex0 · ~ey ~ey0 · ~ey ~ez0 · ~ey
~ex0 · ~ez ~ey0 · ~ez ~ez0 · ~ez

3

75 = (CS0
S )

T

And since C S
S 0 = (C S 0

S )
�1
, we get that C S

S 0 is orthogonal,
this is: (C S 0

S )
�1

= (C S 0
S )

T
. The name “Director Cosine

Matrix” is also justified since the dot product of unitary

vectors is the cosine of the angle they form.

Another property is that det(C S
S 0) = 1. This is due to the

fact that 1 = det(Id) = det((C S
S 0)(C S

S 0)
�1
) =

det((C S
S 0)(C S

S 0)
T
) =

�
det(C S

S 0)
�2
. Therefore

det(C S
S 0) = ±1. The sign + corresponds to both S and S’

being right-handed reference frames, which are the ones

used in practice. 6 / 30



Spacecraft Attitude. Representation methods.

Director Cosine Matrix

Euler Angles

Euler’s angle and axis. Quaternions. Other representations.

Director Cosine Matrix (DCM) III

This attitude representation has 9 parameters. These are
dependent from each other, this is, the coe�cients of the C
matrix cannot be arbitrary (the matrix has to be orthogonal
and with determinant 1). In particular, one must have 6
independent constraints which determine that the matrix is
orthogonal.

Composition: assume that the attitude of S2 w.r.t S1 is given
by CS2

S1
and the attitude of S3 w.r.t S2 is given by CS3

S2
. Then

it it easy to see that the attitude of S3 w.r.t. S1 can be found
by applying the succesive transformations, this is,
CS3
S1

= CS3
S2
CS2
S1
. Therefore attitude “composition” is given by

a simple matrix product (note that the order matters:
non-commutativity of rotations).
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Euler angles I

In general attitude can be mathematically described by three
rotations in the main axes, where any axis can be selected for
the first, second and third rotation with the only rule that one
cannot repeat a consecutive axis (i.e. 1st and 2nd, and 2nd
and 3rd must be di↵erent).
As an example, the classical aircraft rotation sequence is:

n
 �!
zn

S
✓�!
yS

S 0 '�!
xS0

BFS

There exists other options, more suited to spacecraft:

n
✓1�!
xn

S
✓2�!
yS

S 0 ✓3�!
zS0

BFS n
⌦�!
zn

S
i�!
xS

S 0 !�!
zS0

BFS

There are 12 possible sequences of Euler angles to represent
the attititude. This is a minimal representation (3 angles).
One can obtain the DCM from Euler angles by multiplying
elementary rotation matrices. For instance
Cb
n ( , ✓,') = Cb

S 0(')CS 0
S (✓)CS

n ( ).
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Euler angles II

In the figure, the typical aircraft Euler angles
are used w.r.t. orbit axes.

First a rotation around the axis labelled as
3 (yellow): yaw.
Next, a rotation about the resulting axis 2:
pitch
Finally, a rotation about the resulting axis
3: roll

Notice that a rotation a↵ects the position of
the axes for the next rotations.

This sequence is denoted as (3,2,1). The
other sequences of Euler angles contained in
the previous slide are, respectively, (1,2,3)
and (3,1,3).

One can choose a sequence depending on
the angles which are of interest for a given
application or study (see Lesson 5).

!"##$%&'()*%+%,-.

/ 0-12%-3%4"5%-'5)5-4(%

6737-##89

/ !"##!"##!"##!"## '3%5"(-('":%-;"7(%

(*2%<2#")'(8%<2)("5

/ &'()*&'()*&'()*&'()* '3%5"(-('":%-;"7(%

(*2%"5;'(%:"51-#%<2)("5

/ ,-.,-.,-.,-. '3%5"(-('":%-;"7(%

(*2%:-='5%<2)("5

/ >22?%(*232%)"#"5%)"=23%

':%1':=

/ 0-12%-3%4"5%-'5)5-4(%

6737-##89

/ !"##!"##!"##!"## '3%5"(-('":%-;"7(%

(*2%<2#")'(8%<2)("5

/ &'()*&'()*&'()*&'()* '3%5"(-('":%-;"7(%

(*2%"5;'(%:"51-#%<2)("5

/ ,-.,-.,-.,-. '3%5"(-('":%-;"7(%

(*2%:-='5%<2)("5

/ >22?%(*232%)"#"5%)"=23%

':%1':=

v
!

r
!

!

w
!

!

1
ô

2
ô

3
ô

Other possible
sequences: (1,2,1),
(1,3,1), (1,3,2),
(2,1,2), (2,1,3),
(2,3,1), (2,3,2),
(3,1,2), (3,2,3).
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Euler angles III

For the sequence (3,2,1) with angles denoted as ( , ✓,'), one
has:

Cb
n =

2

4
c✓c c✓s �s✓

�c's + s's✓c c'c + s's✓s s'c✓
s's + c's✓c �s'c + c's✓s c'c✓

3

5

Notice that (180
o
+  , 180o � ✓, 180o + ') defines the

same attitude that ( , ✓,'). Therefore typically one limits

✓ 2 [�90
o, 90o] (the angles that are excluded from these

values constitute the shadow set).

Given the DCM, to obtain the Euler angles, one can

derive the following formulas:

1 ✓ = � arcsin c13.
2 From cos = c11/ cos ✓, sin = c12/ cos ✓, obtain  .
3 From sin' = c23/ cos ✓, cos' = c33/ cos ✓, obtain '.

For other sequences, one can get similar relations from

the explicit expression of the DCM.
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Euler angles IV

Main advantage: physically meaningful.

One has, however, to be careful when composing attitude.

Suppose the attitude of S2 w.r.t. S1 is given by ( 1, ✓1,'1)
and the attitude of S3 w.r.t. S2 is given by ( 2, ✓2,'2).
Denote as ( 3, ✓3,'3) the attitude of S3 w.r.t. S1. In general
 3 6=  1 +  2, ✓3 6= ✓1 + ✓2, '3 6= '1 + '2!!

The best way to obtain ( 3, ✓3,'3) is to compute them from
CS3
S1

= CS3
S2
( 2, ✓2,'2)C

S2
S1
( 1, ✓1,'1). This is, going to a

DCM representation, composing, and going back to Euler
angles.

This shows that it might be complex to work with Euler
angles.

Main disadvantage: singularities (as will be seen in Lesson 4).
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Euler’s angle and axis I

Euler’s Rotation Theorem: “the most general movement of a
solid with a fixed point is a single rotation around a unique
axis.”
Note: We are considering a rotation at a given time (a
“snapshot”), not a rotation that is changing as time evolves
(that is the subject of Lesson 4).
Let us call a unit vector in the direction of that axis (Euler’s
Axis) as ~eS/S 0 , and the magnitude of the rotation (Euler’s
Angle) as ✓.
Thus, k~eS/S 0k = 1 and if we write ~eS

0

S/S 0 = [ex ey ez ]T it

follows that e2x + e2y + e2z = 1.
A useful formalism is the following. Given a vector
~v = [vx vy vz ]T define the operator ⇥ acting on ~v (denoted
~v⇥) as follows:

~v⇥ =

2

4
0 �vz vy
vz 0 �vx

�vy vx 0

3

5
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Euler’s angle and axis II

The operation ~v⇥ helps to quickly compute the cross product
~v ⇥ ~w , for any vector ~w , in a reference frame S :
(~v ⇥ ~w)S =

�
~vS

�⇥
~wS .

Thus, if the attitude using Euler’s angle and axis is given by
(~eS

0

S/S 0 , ✓), how to go from there to the DCM and the other
way around? The ⇥ operator helps.
One has

CS 0
S = cos ✓Id+ (1� cos ✓)~eS

0

S/S 0(~eS
0

S/S 0)T � sin ✓
⇣
~eS

0

S/S 0

⌘⇥
.

This is known as the Euler-Rodrigues formula and it is
mathematically proven later.
On the other hand, CS 0

S , and computing Tr(CS 0
S ) and

(CS 0
S )T � CS 0

S , one gets:

cos ✓ =
Tr(CS0

S )� 1

2⇣
~eS

0

S/S0

⌘⇥
=

1

2 sin ✓

⇣
(CS0

S )T � CS0

S

⌘

13 / 30

Spacecraft Attitude. Representation methods.

Director Cosine Matrix

Euler Angles

Euler’s angle and axis. Quaternions. Other representations.

Euler’s angle and axis III

Another relationship between Euler’s angle and axis and the
Director Cosine Matrix is given by the algebraic properties of
the DCM.

Since the DCM is orthogonal, it can be shown that 1 is always
an eigenvalue of it. If C is the DCM, then the eigenvector
associated to the 1 is the Euler’s axis ~e since C~e = ~e.

On the other hand, the other two eigenvalues of the DCM are
precisely ei✓, e�i✓.

This is another way of computing Euler’s angle and axis, by
evaluating the eigenvalues and eigenvectors of the DCM.

14 / 30



Spacecraft Attitude. Representation methods.

Director Cosine Matrix

Euler Angles

Euler’s angle and axis. Quaternions. Other representations.

Euler’s angle and axis IV

Therefore, in this representation, one describes the attitude
with four parameters: three componentes of an unit vector
and an angle. These have a clear physical meaning.
Notice that the attitude given by (~eS

0

S/S 0 , ✓) and by

(�~eS 0

S/S 0 , 360o � ✓) is exactly the same. To avoid this

ambiguity, one can constraint ✓ to [0, 180o).
The “opposite” attitude (the one from S w.r.t. S 0) is given by
(�~eSS 0/S , ✓). Notice also that eSS 0/S = eS

0

S 0/S .

Composition: if the attitude of S2 w.r.t. S1 is given by
(~eS2S1/S2 , ✓1) and the attitude of S3 w.r.t. S2 is given by

(~eS3S2/S3 , ✓2), then, denoting as (~eS3S1/S3 , ✓3) the attitude of S3
w.r.t. S1, one obtains:

cos ✓3 = � cos ✓1 cos ✓2 + sin ✓1 sin ✓2(~eS1/S2
· ~eS2/S3 )

e
S3
S1/S3

=
1

sin ✓3

⇣
sin ✓1 cos ✓2~eS1/S2

+ cos ✓1 sin ✓2~eS2/S3
+ sin ✓1 sin ✓2(~eS1/S2

⇥ ~eS2/S3
)

⌘
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Rotation vector

A minimal attitude representation can be obtained by
combining Euler’s axis and angle in a single vector as follows:
~✓ = ✓~e.

This representation can be useful as it physically represents
the angular speed one would need to maintain constant from
a second for one reference frame respect to another, that start
being the same, to obtain the attitude given by (~e, ✓).

On the other hand for large rotations it is not an adequate
rotation. Note that a rotation of 0o and 360o are physically
the same but the first is ~✓ = ~0 and the second is not
univocally defined.

Thus, the representation is reserved for theoretical analysis of
for small angles (or to determine the angular velocity
necessary to perform a fixed rotation).
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Quaternions

Quaternions were first described by Hamilton (19th century),
who considered them his greatest creation; he thought they
were going to be used as Physics “universal language”.
However, they were soon substituted by vectors (Gibbs) and
matrices (Cayley).

Remember a complex number z can be thought of as a “ 2-D
vector”, which can be written in terms of its components as
z = x + iy . Complex number of unity modulus can be used to
represent a 2-D rotation, since if |z | = 1, one can write
z = ei✓, and it is well-known multiplying by this number
rotates the phase by an angle ✓.

Quaternions extend complex number to “4 dimensions”. A
quaternion q can be written as: q = q0 + iq1 + jq2 + kq3.

q0 is the scalar part and ~q = [q1 q2 q3]T the “vector part” of
q.
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Quaternion Algebra I

To better understand Quaternions it’s important to know their
algebraic properties, this is, how to operate with Quaternions.

Sum: Component-wise, i.e., given q = q0 + iq1 + jq2 + kq3
and q0 = q0

0
+ iq0

1
+ jq0

2
+ kq0

3
, one has that

q00 = q + q0 = q00
0
+ iq00

1
+ jq00

2
+ kq00

3
is given by the obvious

formulae:
q00
0
= q0 + q0

0
, q00

1
= q1 + q0

1
, q00

2
= q2 + q0

2
, q00

3
= q3 + q0

3
.

Product: denote by ?, again, component-wise, knowing the
following rules of multiplication:
i ? i = �1, i ? j = k , i ? k = �j , j ? i = �k , j ? j = �1,
j ? k = i , k ? i = j , k ? j = �i , k ? k = �1.

Hamilton’s formula follows: i ? j ? k = �1.

Notice that q ? q0 6= q0 ? q: Quaternion multiplication is NOT
commutative!
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Quaternions: Plaque on Broom Bridge (Dublin)
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Quaternion Algebra II

Matrix form of the product: It is possible to write the product
q00 = q0 ? q in matrix form as follows:

2

664

q00
0

q00
1

q00
2

q00
3

3

775 =

2

664

q0
0

�q0
1

�q0
2

�q0
3

q0
1

q0
0

�q0
3

q0
2

q0
2

q0
3

q0
0

�q0
1

q0
3

�q0
2

q0
1

q0
0

3

775

2

664

q0
q1
q2
q3

3

775

“vector” form of the product: q00
0
= q0

0
q0 � ~q0T ~q,

~q00 = q0~q0 + q0
0
~q + ~q0 ⇥ ~q.

Conjugate: As for complex numbers, given
q = q0 + iq1 + jq2 + kq3 one defines the conjugate of q as
q⇤ = q0 � iq1 � jq2 � kq3.
Modulus: The definition of the modulus of
q = q0 + iq1 + jq2 + kq3 is |q|2 = q ? q⇤ = q2

0
+ q2

1
+ q2

2
+ q2

3
.

Property: |q ? q0| = |q||q0|.
Division: One defines division using the conjugate:
q0/q = q0/q ? q⇤/q⇤ = (q0 ? q⇤)/|q|2. 20 / 30
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Attitude representation using Quaternions I

Given the attitude represented by Euler’s axis and angle, ~e
and ✓, one can “codify” that attitude in terms of Quaternions
as follows: q0 = cos ✓/2, ~q = sin ✓/2~e.
Notice therefore that if q represents an attitude, it follows
that |q| = 1 (and vice-versa!).
Remember the ⇥ operator and apply it to the quaternion ~q⇥:

~q⇥ =

2

4
0 �q3 q2
q3 0 �q1
�q2 q1 0

3

5

To go from DCM C to Quaternions, use:q0 =
p

1+Tr(C)

2
y

~q⇥
=

1

4q0

�
CT � C

�
.

To go from Quaternions to DCM use Euler-Rodrigues

formula for Quaternions:

C =
�
q2

0
� ~qT~q

�
Id+ 2~q~qT � 2q0~q⇥

.

One can transform a vector ~v without need of the DCM

using the formula:


0

~vB

�
= q⇤

B/A ?


0

~vA

�
? qB/A
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Attitude representation using Quaternions II

Euler-Rodrigues formula in matrix form:

C(q) =

2

4
q2
0
+ q2

1
� q2

2
� q2

3
2(q1q2 + q0q3) 2(q1q3 � q0q2)

2(q1q2 � q0q3) q2
0
� q2

1
+ q2

2
� q2

3
2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 � q0q1) q2
0
� q2

1
� q2

2
+ q2

3

3

5

Quaternions are an attitude representation that requires 4

parameters, with the additional constraint |q| = 1.

Ambiguities: q and �q represent the same attitude, since

if q corresponds to (~e, ✓), then �q corresponds to (�~e,
360� ✓). Prove it!

Disadvantage: no physical sense unless you have some

experience using them.

Notice: To convert from DCM to Quaternions and back

no trig formulas are required, increasing the precission.

If qS 0S represents the attitude of S’ w.r.t. S y qS 00S 0

represents the attitude of S” w.r.t. S’, then qS 00S , the

attitude of S” w.r.t. S, can be computed

qS 00S = qS 0S ? qS 00S 0 (notice that the product is in the

other direction, comparing with the DCM).
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Computing Quaternions from Euler angles

For the classical (3,2,1) sequence, notice that
The quaternion corresponding to the Euler angles ( , 0, 0) is
q = cos /2 + k sin /2.
The quaternion corresponding to the Euler angles (0, ✓, 0) is
q✓ = cos ✓/2 + j sin ✓/2.
The quaternion corresponding to the Euler angles (0, 0,') is
q' = cos'/2 + i sin'/2.

Thus, given the Euler angles ( , ✓,') one obtains a
corresponding quaternion using the composition rule as
q = q ? q✓ ? q'.
Explicitly doing the product one gets

q = (cos /2 cos ✓/2 cos'/2 + sin /2 sin ✓/2 sin'/2)

+i (cos /2 cos ✓/2 sin'/2� sin /2 sin ✓/2 cos'/2)

+j (cos /2 sin ✓/2 cos'/2 + sin /2 cos ✓/2 sin'/2)

+k (sin /2 cos ✓/2 cos'/2� cos /2 sin ✓/2 sin'/2) .
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Quaternions: a word of caution

Careful: some authors (STK as well) write q4 instead of q0 so
the scalar part is the last component of the quaternion.
Some authors define the quaternion product in an opposite
way, so i ? j = �k , etc. The consequence of this is that many
formulas change:

The quaternion composition rule now is as for the matrices
(from right to left).
The formula for vector transformation becomes

0
~vB

�
= qB/A ?


0
~vA

�
? q⇤B/A

Also, if one wants to use our definition of quaternions but to
rotate a vector (instead of changing its reference frame, this is,

to use the active interpretation) then:


0
~v 0

�
= q ?


0
~v

�
? q⇤

where ~v 0 is the vector ~v rotated by an axis and angle defined
by q, which is the formula one may find over the internet.
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Quaternions: shortest path and interpolation

Given two quaternions q0 and q1 representing two di↵erent
attitudes, can one construct a ‘̀ınterpolation path,”
continuous, q(s) such that q(0) = q0 and q(1) = q1?
The way to do it is to first find q2 representing the attitude
between q0 and q1 (the rotation quaternion):
q2 =

1

q0
? q1 = q⇤

0
q1. From this quaternion extract Euler’s

angle and axis ( ✓ and ~e):q2 =


cos ✓/2
sin ✓/2~e

�
.

Now the solution of the problem is q(s) which is the product
of q0 and another quaternion coming from Euler’s axis ~e and
angle s✓, so that when s = 0 it is the unity quaternion (and
the product is q0) and when s = 1 it is q2 (and the product is
q1):

q(s) = q0 ?


cos(s✓/2)
sin(s✓/2)~e

�
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Rodrigues Parameters I

Atittude representation using Rodrigues Parameters (RP, also
called Gibbs vector) can be easily obtained from the
quaternion as ~g = ~q

q0
, obviously this is only valid if q0 > 0

(i .e.✓ < 180o) because otherwise one gets a singularity. To
recover the quaternion from ~g :

k~gk2 = k~qk2

q2
0

=
1� q2

0

q2
0

Thus q0 =
±1p

1+k~gk2
. And therefore:

q =
±1p

1 + k~gk2


1
~g

�

In terms of Euler’s axis and angle, ~g = ~e tan ✓
2
.

26 / 30



Spacecraft Attitude. Representation methods.

Director Cosine Matrix

Euler Angles

Euler’s angle and axis. Quaternions. Other representations.

Rodrigues Parameters II

The relationship with the DCM is as follows:

C = Id+2
~g⇥~g⇥ � ~g⇥

1 + k~gk2 = (Id�~g⇥)(Id+~g⇥)�1 = (Id+~g⇥)�1(Id�~g⇥)

On the other hand, since q0 =
p

1+Tr(C)

2
and

~q⇥ = 1

4q0

�
CT � C

�
, one gets:

~g⇥ =
q⇥

q0
=

1

4q2
0

⇣
CT � C

⌘
=

CT � C

1 + Tr(C )

Composition follows a simple rule.If ~gS 0S represents the
attitude of S’ w.r.t. S and ~gS 00S 0 represents the attitude of S”
w.r.t. S’, then ~gS 00S , the attitude of S” w.r.t. S, is computed
as:

~gS 00S =
~gS 00S 0 + ~gS 0S � ~gS 00S 0 ⇥ ~gS 0S

1� ~gS 0S · ~gS 00S 0
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Modified Rodrigues Parameters

The representation using Modified Rodrigues Parameters
(MRP) is quite recent (1962) but popular in control
applications. Similarly to RP, one can get it from the
quaternion, by defining ~p = ~q

1+q0
. To recover the quaternion

from the MRP:

k~pk2 = k~qk2

(1 + q0)2
=

1� q2
0

(1 + q0)2
=

1� q0
1 + q0

Then q0 =
1�k~pk2
1+k~pk2 . Therefore:

q =
1

1 + k~pk2


1� k~pk2

2~p

�

In terms of Euler’s axis and angle, ~p = ~e tan ✓
4
.
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Modified Rodrigues Parameters II

The relationship of MRP with the DCM is

C = Id+
8~p⇥~p⇥ � 4(1� k~pk2)~p⇥

(1 + k~pk2)2 =
⇥
(Id� ~p⇥)(Id+ ~p⇥)�1

⇤2

Since q and �q represent the same attitude, then ~p = ~q
1+q0

and ~p0 = �~q
1�q0

also represent the same attitude. How we can
relate both?

k~pk2 = 1� q0
1 + q0

=
1

k~p0k2

Thus ~p and �~p
k~pk2 represent the same attitude. Limiting

k~pk  1 we avoid the ambiguity (notice however that there
are some other ambiguities if k~pk = 1).
Composition is complex compared to RPs. If ~pS 0S represents
the attitude of S’ w.r.t. S and ~pS 00S 0 represents the attitude of
S” w.r.t. S’, then ~pS 00S , the attitude of S” w.r.t. S, is:

~pS00S =
(1� k~pS0Sk2)~pS00S0 + (1� k~pS00S0k2)~pS0S � 2~pS00S0 ⇥ ~pS0S

1 + k~pS0Sk2k~pS00S0k2 � 2~pS0S · ~pS00S0 29 / 30
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The error quaternion

To consider errors or to linealize any (nonlinear) equation
containing Quaternions around a (reference) value q̄, the
classical “aditive” formulation q = q̄ + �q does not work well,
because even if q̄ and �q have unit modulus, the sum of them
may not be unitary.
It is more convenient to use a “multiplicative” formulation
where q = q̄ ? �q, and�q is known as the error quaternion
which should be close to the unity quaternion q = [1 0 0 0]T .
�q has 4 components but, obviously, only 3 d.o.f.; these can
be codified in a vector ~a “small” (in fact equivalent to 2~g):

�q(~a) =
1p

4 + k~ak2


2
~a

�

Notice that �q(~a) has unity modulus, as expected. If one
finally needs to linealize, one gets:

�q(~a) ⇡


1
~a/2

�
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Attitude determination

Attitude determination is a process that estimates the present
attitude by using sensors and applicable algorithms. It can be
thought of as a “static” process that gives the picture of what
the present attitude is.

Attitude determination sensors, in general, determine a vector
~v in the body axes, this is, ~vB (in fact they use “sensor axes”
but the transformation to body axes should be known and it is
implicitly applied). It is assumed that said vector is known in
some reference axes (inertial axes or orbit axes), denoted as
~vN . As will be seen it is necessary to have two or more
measurements of this kind to be able to solve the problem.

In Lesson 6 we see sensors that from measurements of angular
velocity ~!B continuously determine the attitude (a more
dynamic process that is typically referred to as attitude
estimation).
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TRIAD and Wahba’s problem

Estimation from observations

In general, consider we have n (2 or more) sensors that
determine a vector ~vi , i = 1, . . . , n, in body axes, this is, ~vB

i
.

The vector is assumed known in some reference axes (inertial
axes or orbit axes, with respect to which we want to study the
spacecraft attitude) and denoted in that frame as ~vN

i
. Those

are unit vectors since in principle only directions matter.

Thus we have n equation written as ~vB
i

= C
B

N
~vN
i

and we need
to solve for CB

N
.

To simplify write ~Wi = ~vB
i
, ~Vi = ~vN

i
, A = C

B

N
. Thus, we have

n equations ~Wi = A ~Vi and need to solve for A.

These vectors will contain some errors.

If n = 2 there a simple method that can be applied known as
TRIAD. We’ll see other more general methods for n � 2.

Question: what conditions would the
measurements/references verify if they are exact??
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TRIAD Method

Start from two observations related to the references through
the DCM: ~W1 = A ~V1 and ~W2 = A ~V2

Define the following vectors: ~r1 = ~V1, ~r2 =
~V1⇥ ~V2

| ~V1⇥ ~V2|
, and

~r3 =
~V1⇥~r2
| ~V1⇥~r2|

. Similarly: ~s1 = ~W1, ~s2 =
~W1⇥ ~W2

| ~W1⇥ ~W2|
, and

~s3 =
~W1⇥~s2

| ~W1⇥~s2|
. It is rather obvious that one should have now:

~s1 = A~r1, ~s2 = A~r2, and ~s3 = A~r3.
Construct now the matrices Mref = [~r1 ~r2 ~r3] and
Mobs = [~s1 ~s2 ~s3]. It holds that Mobs = AMref . In addition,
the columns of Mref are orthonormal between them. Thus,
Mref is invertible (and orthogonal!). Therefore we can solve
for A as A = MobsM

T

ref
.

Notice that the method is not symmetric, as the measurement
labelled as 1 is given more importance. In practice, A will not
be the exact DCM matrix due to errors in the sensors. Thus,
one should use the “best” measurement as first.
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Wahba’s Problem

Consider now n measures satisfying ~Wi = A ~Vi . We pose the
problem as a least squares minimization problem.
Define the function L(A) = 1

2

P
n

i=1 ai | ~Wi � A ~Vi |2, where ai

are the weights given to each measurement (verifyingP
n

i=1 ai = 1) and pose the mathematical objective of finding
A (orthogonal) such L(A) is minimized. In the literature this
is known as ”Wahba’s Problem”.
Since operating

| ~Wi � A ~Vi |2 = ( ~Wi � A ~Vi )
T ( ~Wi � A ~Vi ) = 2� 2 ~W T

i A ~Vi ,

one has

L(A) = 1�
nX

i=1

ai
~W T

i A ~Vi = 1� g(A),

where g(A) =
P

n

i=1 ai
~W T

i
A ~Vi . Minimizing L(A) is thus

equivalente to maximizing g(A) (and notice g(A)  1!).
5 / 24
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Davenport’s q method
Writing A as a function of q by using Euler-Rodrigues
(A = (q20 � ~qT ~q)I+ 2~q~qT � 2q0~q⇥) we reach

g(A) =
nX

i=1

ai
~W T

i
(q20�~qT ~q) ~Vi+2

nX

i=1

ai
~W T

i
~q~qT ~Vi�2

nX

i=1

ai
~W T

i
q0~q

⇥ ~Vi

Develop now each term trying to reach a bilineal form
g(q) = q

T
Kq:

Starting with the second term

2
nX

i=1

ai
~W T

i
~q~qT ~Vi = 2

nX

i=1

ai~q
T ~Wi

~V T

i
~q = 2~qTB~q = ~qT (B+B

T ) ~q

where B =
P

n

i=1 ai
~Wi

~V T

i
.

The first term can be written as
nX

i=1

ai
~W T

i
(q20�~qT ~q) ~Vi = (q20�~qT ~q)

nX

i=1

ai
~W T

i
~Vi = q0�q0�~qT (�I)~q

where � =
P

n

i=1 ai
~W T

i
~Vi = Tr(B).
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TRIAD and Wahba’s problem

Davenport’s q method

Finally, the last term can be expressed as:

�2
nX

i=1

ai
~W T

i
q0~q

⇥ ~Vi = 2
nX

i=1

ai
~W T

i
q0

~V⇥
i
~q = 2q0~z

T ~q = q0~z
T ~q+~qT~zq0

where ~zT =
P

n

i=1 ai
~W T

i
~V⇥
i
, hence ~z = �

P
n

i=1 ai
~V⇥
i

~Wi .

One has (~a⇥~b)⇥ = ~b~aT � ~a~bT , what can be shown from the
identity (~a⇥ ~b)⇥ ~c . Observe then that

~z⇥ = �
nX

i=1

ai ( ~V
⇥
i

~Wi )
⇥ =

nX

i=1

ai
~Vi

~W T

i �
nX

i=1

ai
~Wi

~V T

i = B
T�B
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Davenport’s q method

Thus, the function g is expressed in terms of the quaternion as

g(q) = q
T
Kq

where the matrix K can be found from the coe�cients of a
newly defined matrix in terms of weights, measurements and
references B =

P
n

i=1 ai
~Wi

~V T

i
, as follows

� = Tr(B),

S = B + B
T ,

~z⇥ = B
T � B

being K a 4⇥ 4 matrix equal to

K =


� ~zT

~z S � �Id

�
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Davenport’s q method

Thus, the problem is now reduced to finding q (attitude
quaternion, this is, a norm 1 vector of four components) such
that g(q) = q

T
Kq is maximized.

To solve a multivariable maximization problem with
constraints (qTq = 1) one can use Lagrange’s multipliers:

H = q
T
Kq � �(qTq � 1)

Taking derivative w.r.t. q and setting it to zero:
@H
@q = 2qTK � 2�qT = 0 �! Kq = �q.
Thus � must be an eigenvalue of K and q the associated
eigenvector of modulus 1 (there are two, but of opposing
signs, thus representing the same attitude). To find which
eigenvalue, replace the solution in g(q):
g(q) = q

T
Kq = q

T�q = �
Therefore, the maximum attained at the critical point is equal
to the eigenvalue and the solution will be the eigenvector (of
modulus 1) associated to the maximum eigenvalue.
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The QUEST method

Davenport’s q method reduces the attitude determination
problem to an eigenvalue/eigenvector problem, however this
algebraic method might be problematic to solve on a satellite,
depending on computational resources available onboard.
In 1978 the QUEST (QUaternion ESTimator) method was
developed to avoid the computational burden.
The idea is to rewrite Kq = �q in terms of the K matrix:


� ~zT

~z S � �Id

� 
q0

~q

�
= �


q0

~q

�

Therefore two equations can be extracted.

�q0 + ~zT ~q = �q0, q0~z + S~q � �~q = �~q

Remembering Gibb’s vector ~g = ~q
q0
, one can manipulate the

second equation reaching

~z + [S � (� + �)I] ~g = 0
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The QUEST Method

Then ~g = [(� + �)I� S ]�1 ~z (but we don’t know �, the
maximum eigenvalue)
A first approximation is to take � ⇡ 1 (which would be the
value if the measurements were without error). Then
~g = [(1 + �)I� S ]�1 ~z
A better approximation is to find an explicit expression for the
maximum eigenvalue by finding the roots of the characteristic
equation of K , which is:

�4 � (a+ b)�2 � c�+ (ab + c� � d) = 0

Where the coe�cients are

a = � � Tr[adj(S)],

b = � � ~zT~z ,

c = det[S ] + ~zTS~z ,

d = ~zTS2~z .
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Errors in attitude determination

Errors are, by definition, unknown. Since, if they were known,
they would not be errors anymore!

However, it is important to characterize errors in some way.

The science that deals with unknowns is statistics (and its
associated math field, probability).

Engineers have to know about statistics, since it can be
applied to many fields. Here, we give a refresher for some
concepts necessary for estimating errors in attitude
determination.

We will always use normal distributions.

We go from sensor errors (typically given by their technical
specifications) to errors in attitude determination:
propagation of uncertainty.
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1-D Continuous RandomVariables

Let X 2 R be a random continuous variable.
Remember that the cumulative distribution function (CDF)
F (x) is the probability that X  x , which is written as
F (x) = P(X  x).
The CDF is computed from the probability density function
(PDF) f (x): F (x) =

R
x

�1 f (y)dy .
One defines the operator “mathematical expectation” acting
over the function g(x) as E [g(X )] =

R1
�1 g(y)f (y)dy . It is a

linear operator:
E [↵1g1(X ) + ↵2g2(X )] = ↵1E [g1(X )] + ↵2E [g2(X )]. Two
importan examples are:

Mean: m(X ) = E [X ] =
R1
�1 yf (y)dy .

Variance: V (X ) = E [(X �m(X ))2] = E [X 2]� (E [X ])2

(non-negative).
The typical deviation � is the square root of the variance
� =

p
V (X ) to make it have the same units as the mean.

Does it make sense for errors to have nonzero mean?
13 / 24
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Normal (Gaussian) distribution I

It is the most commonly used distribution in statistics. One
writes X ⇠ N(m,�2) and its PDF is

f (x) = 1
�
p
2⇡
Exp

⇣
� (x�m)2

2�2

⌘
.

Confidence intervals: if X ⇠ N(m,�2) then:
1-� interval: P(X 2 [m � �,m + �]) = 68.3%.
2-� interval: P(X 2 [m � 2�,m + 2�]) = 95.45%.
3-� interval: P(X 2 [m � 3�,m + 3�]) = 99.74%.
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Normal (Gaussian) distribution II

The central limit theorem shows that the sum of independent
random variables (with any kind of distribution), tends (in
average) to a normal distribution. Since large-scale errors
come from the sum and accumulation of many small-scale
errors (think for example about temperature fluctuations), this
justifies using normal distributions as a good model for errors.
An important property of a normal distribution is that the
sum of independent normals is again normal, this is, if
X ⇠ N(mx ,�2

x) and Y ⇠ N(my ,�2
y ), and they are

independent, then Z = X + Y is distributed as
Z ⇠ N(mx +my ,�2

x + �2
y ).

Therefore �z =
q

�2
x + �2

y , this is, the typical deviation of the

sum of errors is the square root of the sum of squares of the
typical deviation of errors.
This rule is known as Root-Sum-of-Squares (RSS) and it is of
high importance when dealing with accumulated errors.
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Multivariate Continuous Random Variables

Let ~X 2 Rn be a multivariate continuous random variables.
Each component of ~X follows a 1-D distribution (i.e. is a 1-D
random variable).
Following the 1-D case, we now define a joint CDF that is
computed from a joint PDF f (~x).
Similarly E [g(~X )] =

R
Rn g(~y)f (~y)dy . Important cases:

Mean: ~m(~X ) = E [~X ] =
R
Rn ~yf (~y)dy .

Covariance: Cov(~X ) = E [(~X �m(~X ))(~X �m(~X ))T ] = ⌃. A
symmetric, non-negative definite matrix. The values of its
diagonal represent the variance the corresponding component
of ~X , whereas o↵-diagonal coe�cients represent the
correlation between two components of ~X . One has
⌃ = E [(~X ~XT ]�m(~X )m(~X )T .

For instance for n = 3 and writing ~X = [X ,Y ,Z ]:

⌃ =

2

64
�2
x

E [(X � mx )(Y � my )] E [(X � mx )(Z � mz )]
E [(X � mx )(Y � my )] �2

y
E [(Y � my )(Z � mz )]

E [(X � mx )(Z � mz )] E [(Y � my )(Z � mz )] �2
z

3

75
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Multivariate normal distribution I

One writes ~X ⇠ Nn( ~m,⌃) and its PDF is
f (~x) = 1

Det(⌃)(2⇡)n/2
Exp

�
� 1

2 (~x � ~m)T⌃�1(~x � ~m)
�
.

Confidence intervals become regions in Rn, defined by
P(~X 2 ⌦) = P⌦.
The shape of these regions is a multidimensional ellipsoid
described by (~x � ~m)T⌃�1(~x � ~m) = d

2, where d depends on
P⌦. The size of the eigenvalues of ⌃ determines the size of
the ellipsoid, whereas the direction of the ellipsoid axes is
given by the eigenvectors of ⌃.
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Multivariate normal distribution II

A classical example from aerial navigation or orbital
mechanics, one can describe an aircraft/spacecraft position in
some axes as �~r = [�x �y �z ]T , as a multivariate normal with
n = 3, with mean zero (centered in the expected position of
the vehicle) and covariance matrix

⌃ =

2

64
�2
x

0 0
0 �2

y
0

0 0 �2
z

3

75

Then one can visualize the movement of the vehicle with the
movement of the whole ellipsoid, representing a region (tube)
where the vehicle can be found with some degree of certainty.

Property: If ~X ⇠ Nn( ~mx ,⌃x) and ~Y ⇠ Nn( ~my ,⌃y ) and they

are independent, then if ~Z = ~X + ~Y it follows that
~Z ⇠ Nn( ~mx + ~my ,⌃x + ⌃y ).

Similarly if A~X + ~b where A and b are non-random (known) it
follows that A~X + ~b ⇠ Nn(A ~mx + ~b,A⌃xA

T ).
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Errors in attitude determination

How can one characterize attitude errors?
It will depend on the chosen attitude representation.
For instance if one chooses quaternions, then one could use
the quaternion error, parameterized �q(~a) and give a
multivariate distribution for ~a. Typically with zero mean and
some covariance. Then the approximate attitude q̂ is related
to the real attitude q as in Lesson 2: q̂ = q ? �q where

�q(~a) =
1p

4 + k~ak2
⇥

2
~a

⇤

If one uses the DCM, it is required to find a way to
represent some kind of “DCM error”.
It does not make sense to use a 9-dimensional distribution
function to characterize the error of each component since
attitude does have 3 degrees of freedom, as we know.
Since errors are (or should be) small, we next characterize
DMC errors with an approximation for “small” DMC.
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DCM for small angles I

Let A and B be two reference frames related as follows

A
d✓1�!
xA

S1
d✓2�!
yS1

S2
d✓3�!
zS2

B

where we assume that d✓i are small angles, so we can make
the approximations cos d✓i ' 1 and sin d✓i ' d✓i .

Writting the DCMs taking into account the approximations:

C
S1
A

=

2

4
1 0 0
0 1 d✓1
0 �d✓1 1

3

5 , C
S2
S1

=

2

4
1 0 �d✓2
0 1 0

d✓2 0 1

3

5 , C
B

S2
=

2

4
1 d✓3 0

�d✓3 1 0
0 0 1

3

5 .

Then, since CB

A
= CB

S2
C S2
S1
C S1
A
, and neglecting all double

products of angles (i.e. d✓id✓j ' 0), one gets:

C
B

A
=

2

4
1 d✓3 �d✓2

�d✓3 1 d✓1
d✓2 �d✓1 1

3

5 = Id �

2

4
0 �d✓3 d✓2

d✓3 0 �d✓1
�d✓2 d✓1 0

3

5 = Id � d~✓⇥,
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DCM for small angles II

In the previous slides the definition d~✓ = [d✓1 d✓2 d✓3]T was
made, and the matrix

d~✓⇥ =

2

4
0 �d✓3 d✓2

d✓3 0 �d✓1
�d✓2 d✓1 0

3

5 ,

is the result of the operator ⇥ as was defined in Lesson 2.

Notice that under these hypothesis (small angles) it does not
matter the order of rotations and the angles add up, however
not all sets of Euler angles could be used since no axes can be
repeated (meaning: 1-2-3 o 3-2-1 or any similar set works, but
1-2-1 would not).

Exercise: work out the (very simple!) relationship between the
small angles vector and the vector ~a used in quaternion errors
by using Euler’s axis and angle.
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Error of a DCM

To model errors for a DCM we use the “small angles vector”
just defined, which will be randomly distributed.

Denote Ĉ
B

N
the matrix with errors (or actually Ĉ

B

N
= C

B̂
n ),

where:

N �!B
��x�!
xb

S1
��y�!
yS1

S2
��z�!
zS2

B̂

Then C
B̂

N
= C

B̂

B
C

B

N
and thus CB

N
= C

B

B̂
C

B̂

N
, and we define

�CB

N
= C

B

N
� Ĉ

B

N
= C

B

B̂
Ĉ

B

N
� Ĉ

B

N
= (CB

B̂
� Id)ĈB

N
.

Assuming �~� = [��x ��y ��z ]T are small, one has

C
B̂

B
= Id� �~�⇥ (and C

B

B̂
= Id+ �~�⇥).

Then the relationship between the “error matrix” �CB

N
and �~�

is �CB

N
= (Id+ �~�⇥ � Id)ĈB

N
= �~�⇥

Ĉ
B

N
.And one has

C
B

N
= (Id+ �~�⇥)ĈB

N
.
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Covariance matrix for TRIAD
For TRIAD, one can model the error as a small angles vector
�~� given by a multivariate normal with zero mean and
covariance P��. One can prove:

P�� = �2
1Id +

1

| ~W1 ⇥ ~W2|2
⇣
(�2

2 � �2
1)W1W

T

1 + �2
1(W

T

1 W2)(W1W
T

2 + W2W
T

1 )
⌘

where �1 represents the angular error (given as typical
deviation) of the first measurement and �2 the error of the
second measurement.

Notice, as expected, that the first measurement has more
influence on the final error.
If the measurements are orthogonal, then:

P�� = �2
1Id + (�2

2 � �2
1)W1W

T

1

Imagine for instance if W1 is the x axis, then this results in
P�� diagonal, with the (1,1) entry as �2

2 and the other
diagonal coe�cients as �2

1: Can you interpret this?
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A brief refresher of statistics
Errors in attitude determination methods

Covariance matrix for q

Now ~a represents the attitude error (via �q(~a)) and therefore
we model ~a as a multivariate distributed vector with zero
mean and covariance matrix Pa.
In the q algorithm each measurement has an error represented
by its variance �2

i
. The global error of q depends on the

chosen weights and one can prove the following relationship

Pa =

2

4Id �
nX

i=1

ai
~Wi

~WT

i

3

5
�1 2

4
nX

i=1

a
2
i
�2
i

h
Id � ~Wi

~WT

i

i
3

5

2

4Id �
nX

i=1

ai
~Wi

~WT

i

3

5
�1

A good rule of thumb for ai is make it proportional to the
inverse of the variances �2

i
, however since the ai ’s add up to

1, one chooses ai =

1
�2
iP

n

j=1
1
�2
j

so Pa =

"
P

n

j=1
1
�2
j

Id �
P

n

i=1
1
�2
i

~Wi
~WT

i

#�1

.

Note that
h
Id�

P
n

i=1 ai
~Wi

~W T

i

i
should be invertible.

Exercise: consider the particular case analyzed for TRIAD
with equal weights and compare.
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Attitude Di↵erential Kinematic Equations
DCM
Euler angles
Quaternions

Attitude Di↵erential Kinematic Equations

Remember that, when talking about displacements, the
di↵erential kinematic equations (for short:kinematics) relate
the position and velocity vectors whereas the di↵erential
dynamic equations (dynamics) relate the velocity and force
vectors.

For attitude, the kinematics relate the chosen representation
of attitude (DCM, Euler angles, quaternions,...) with the
angular velocity ~! (normally, expressed in body axes).
Typically these equations are non-linear.

In attitude estimation (which is a part of inertial navigation),
gyros measure ~! and one uses kinematics (integrating the
equation) to compute attitude (Lesson 6).

Thus, it is important to know the kinematics for the di↵erent
representations, to see the possible computational advantages
(hint: quaternions win).
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DCM kinematics I

Suppose we want to compute the attitude of a frame B w.r.t.
to A, using the DCM CB

A (t), knowing B is rotating w.r.t. A
at an angular velocity ~!B

B/A.

By definition d
dtC

B
A =

CB
A (t+dt)�CB

A (t)
dt (if someone prefers

limits the reasoning is analogous)
Fixing A, we can imagine that B is moving, so in fact

B = B(t) and, formally, we can write CB
A (t) = CB(t)

A .
Using this reasoning,

CB
A (t + dt) = CB(t+dt)

A = CB(t+dt)
B(t) CB(t)

A . Then:

A�!B(t)�!B(t + dt)

During a time dt, the reference frame B has rotated w.r.t to
itself just a small angle; remembering Lesson 3:

CB(t+dt)
B(t) = Id�

⇣
d~✓B

⌘⇥
, where d~✓B is a small angles vector.
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DCM kinematics II

Then: ddtC
B
A =

CB
A (t+dt)�CB

A (t)
dt =

CB(t+dt)
B(t) CB

A (t)�CB
A (t)

dt =
(Id�(d~✓B)

⇥
)CB

A (t)�CB
A (t)

dt = �(d~✓B)
⇥

dt CB
A (t)

The matrix
(d~✓B)

⇥

dt is written
⇣
d~✓B

⌘⇥

dt
=

2

4
0 �d✓3

dt
d✓2
dt

d✓3
dt 0 �d✓1

dt
�d✓2

dt
d✓1
dt 0

3

5 =

2

4
0 �!3 !2

!3 0 �!1

�!2 !1 0

3

5 ,

where ~!B
B/A = [!1 !2 !3]T since d~✓B is the angle the body

rotates in a dt seen from its own frame, w.r.t. reference
system A: by definition this is the angular velocity. Then

⇣
~!B
B/A

⌘⇥
=

2

4
0 �!3 !2

!3 0 �!1

�!2 !1 0

3

5 ,

Thus: d
dtC

B
A = ˙CB

A = �
⇣
~!B
B/A

⌘⇥
CB
A . 4 / 17
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DCM kinematics III

A variation: transposing both sides of ˙CB
A = �

⇣
~!B
B/A

⌘⇥
CB
A

we reach ĊA
B . = CA

B

⇣
~!B
B/A

⌘⇥

DCM kinematics: matrix di↵erential equation, solved
component-wise (system of 9 coupled scalar ODEs).
Main di�culty in numerical resolution: conservation of
orthogonality. Notice that, since I = (CB

A )(CB
A )T , taking

derivative: 
d

dt
(CB

A )

�
(CB

A )T + CB
A

d

dt
(CB

A )T

= �
⇣
~!B
B/A

⌘⇥
CB
A (CB

A )T + CB
A CA

B

⇣
~!B
B/A

⌘⇥

= �
⇣
~!B
B/A

⌘⇥
+

⇣
~!B
B/A

⌘⇥
= 0

Thus kinematics preserve orthogonality. But numerical
schemes will not.

5 / 17

Attitude Di↵erential Kinematic Equations
DCM
Euler angles
Quaternions

DCM kinematics IV

There exists algorithms to find, given a certain matrix, another
orthogonal matrix “closest” to the starting one in some sense.
For instance, given M, one can compute

Q = M(MTM)�1/2

which is orthogonal (and equal to M if it was orthogonal to
start with).
Problem: computing the square root of a matrix is not simple.
An iterative method that avoids the computation is the
following.
Start: Q0 = M; iterate Qk+1 = 2M(Q�1

k M +MTQk)�1, and
it’s easy to see that this converges to Q when k ! 1, with
the condition that M is close to some orthogonal matrix (and
therefore invertible).
If M is very close to being orthogonal to start with,
convergence is quite fast!
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Euler angles kinematics I

Example: aircraft set of Euler angles (yaw,pitch,roll). Start
from the definition:

n
 �!
zn

S
✓�!
yS

S 0 '�!
xS0

b

Angular velocity can be decomposed between frames as
~!b/n = ~!b/S 0 + ~!S 0/S + ~!S/n.

Writing the equation in b: ~!b
b/n = ~!b

b/S 0 + ~!b
S 0/S + ~!b

S/n

On the other hand:
~!b
b/S 0 = ['̇ 0 0]T , ~!S 0

S 0/S = [0 ✓̇ 0]T , ~!S
S/n = [0 0  ̇]T .

Then: ~!b
b/n = ~!b

b/S 0 + Cb
S 0~!S 0

S 0/S + Cb
S ~!

S
S/n and since

Cb
S = Cb

S 0CS 0
S , we reach:

~!b
b/n = ~!b

b/S 0 + Cb
S 0~!S 0

S 0/S + Cb
S 0CS 0

S ~!S
S/n

7 / 17

Attitude Di↵erential Kinematic Equations
DCM
Euler angles
Quaternions

Euler angles kinematics II

Developing:

~!b
b/n =

2

4
'̇
0
0

3

5+

2

4
1 0 0
0 c' s'
0 �s' c'

3

5

2

4
0
✓̇
0

3

5

+

2

4
1 0 0
0 c' s'
0 �s' c'

3

5

2

4
c✓ 0 �s✓
0 1 0
s✓ 0 c✓

3

5

2

4
0
0
 ̇

3

5

=

2

4
'̇
0
0

3

5+

2

4
0

c'✓̇
�s'✓̇

3

5+

2

4
�s✓ ̇
s'c✓ ̇
c'c✓ ̇

3

5

=

2

4
1 0 �s✓
0 c' s'c✓
0 �s' c'c✓

3

5

2

4
'̇
✓̇
 ̇

3

5
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Euler angles kinematics III

What we actually need is an expression for the time
derivatives of angles as a function of ~!b

b/n = [!1 !2 !3]T ,
therefore, inverting the matrix we reach

2

4
'̇
✓̇
 ̇

3

5 =

2

4
1 0 �s✓
0 c' s'c✓
0 �s' c'c✓

3

5
�1 2

4
!1

!2

!3

3

5 =
1

c✓

2

4
c✓ s✓s' s✓c'
0 c'c✓ �s'c✓
0 s' c'

3

5

2

4
!1

!2

!3

3

5

Notice these are 3 non-linear ODEs, with several trig

functions.

There is a singularity at ✓ = ±90
o
. In fact Euler angles

are not well defined for this attitude. This singularity is

the reason why Euler angles are frequently avoided in

inertial navigation (for aircraft or spacecraft).

All other sets of Euler angles also exhibit singularities;

there is no combination of angles free of them.
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Euler’s axis and angle kinematics

Representation as Euler’s axis and angle, namely (~ebb/n, ✓), has
the following kinematics:

For Euler’s angle: ✓̇ = (~ebb/n)
T~!b

b/n

For Euler’s axis:

~̇ebb/n =
1

2

⇣
~ebb/n

⌘⇥
+

1

tan ✓/2

⇣
Id� ~ebb/n(~e

b
b/n)

T
⌘�
~!b
b/n

These are 4 ODEs, non-linear.

They exhibit a singularity at ✓ = 0.

If ~! has a constant direction equal to the initial axis ~e, then
kinematics simplify to ~̇e = ~0 (this is, ~e(t) = ~e(0)) and
✓̇ = k~!k (important case!).

In practice these are seldom used; we just apply them as an
intermediate step towards quaternion kinematics.
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Quaternion kinematics I

Remember the attitude quaternion defined from Euler’s angle
and axis:
q0 = cos ✓/2, ~q = sin ✓/2~ebb/n.
Taking derivative in the q0 definition and substituting the
kinematics for ✓, one gets
q̇0 = �1

2 sin ✓/2✓̇ = �1
2 sin ✓/2(~e

b
b/n)

T~!b
b/n = �1

2~q
T~!b

b/n

Taking derivative now in the ~q definition:

~̇q =
1

2
cos ✓/2~ebb/n✓̇ + sin ✓/2~̇ebb/n

Substituting Euler’s axis and angle kinematics:

~̇q =
1

2
cos ✓/2~ebb/n(~e

b
b/n)

T~!b
b/n

+
1

2
sin ✓/2

⇣
~ebb/n

⌘⇥
+

1

tan ✓/2

⇣
Id� ~ebb/n(~e

b
b/n)

T
⌘�
~!b
b/n

=
1

2

⇥
q⇥ + q0Id

⇤
~!b
b/n 11 / 17
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Quaternion kinematics II

Quaternion kinematics in matrix form:

d

dt

2

664

q0
q1
q2
q3

3

775 =
1

2

2

664

�q1 �q2 �q3
q0 �q3 q2
q3 q0 �q1
�q2 q1 q0

3

775

2

4
!x

!y

!z

3

5

where ~!b
b/n = [!x !y !z ]T .

These are 4 bilinear ODEs, without singularities.
Notice the absence of trig functions, which helps precision.
These properties of quaternion kinematics are perhaps the
most important reasons why its use is wide among the
aerospace community to represent spacecraft (and aircraft!)
attitude. All computations can be done (internally) with
quaternions, and if necessary one can transform them to other
representations for visualization or other purposes, depending
on the application.
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Quaternion kinematics III

Remembering the definition of quaternion product as a
matrix, one can notice some similarities with the di↵erential
kinematic equation. In fact, defining a “quaternion” q! with
zero scalar part and whose vector part is equal to the
components of the angular velocity, namely:

q! =
⇥
0 !x !y !z

⇤T

kinematics can be expressed very simply as

q̇ =
1

2
q ? q!

The only drawback of using quaternion kinematics is that
numerical errors can creep in and make the quaternion
modulus di↵erent from 1. However, unlike the DCM, making
the quaternions verify its constraint is easy; just normalizing
the quaternion (dividing by its modulus) we can make its
modulus stay at one.
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Other kinematics

RP:

~̇g =
1

2

h
Id+ ~g⇥ + ~g~gT

i
~!

MRP:

~̇p =
1 + k~pk2

4


Id+ 2

~p⇥ + ~p⇥~p⇥

1 + k~pk2

�
~!

Rotation vector:

~̇✓ = ~! +
1

2
~✓ ⇥ ~! +

1

✓

✓
1� ✓

2 tan ✓/2

◆
~✓ ⇥ (~✓ ⇥ ~!)

14 / 17



Attitude Di↵erential Kinematic Equations
DCM
Euler angles
Quaternions

Slew maneuvers

Given two di↵erent attitudes expressed as quaternions, q0 and
q1 and some time interval T , can we construct a continuous
angular velocity ~!(t) such that q(t = 0) = q0 and
q(t = T ) = q1?
The key to do it is, as in interpolation, to find the so-called
rotation quaternion q2 representing the attitude between q0
and q1: q2 =

1
q0
? q1 = q⇤0q1. From this quaternion extract

Euler’s angle ✓1 and axis ~e which verify q2 =


cos ✓1/2
~e sin ✓1/2

�
,

this is, ✓1 = 2arccos(q20) and ~e = ~q2
sin ✓1/2

The solution angular speed ~!(t) goes in the direction of ~e and
represents the shortest rotation. Call its modulus !(t). Then
✓(t) =

R t
0 !(⌧)d⌧ and the attitude evolves as

q(t) = q0 ?


cos(✓(t)/2)
sin(✓(t)/2)~e

�

Any !(t) such that
R T
0 !(⌧)d⌧ = ✓1 is a solution. 15 / 17

Attitude Di↵erential Kinematic Equations
DCM
Euler angles
Quaternions

Linearizing quaternion kinematics I

Linearizing is crucial in many aerospace guidance and control
applications. Asume we have a reference angular speed ~!r

that generates a reference quaternion q̄ according to
kinematics. If ~! = ~!r + �~!, where �~! is “small,” what is the
new resulting quaternion due to this small change?
Use the error quaternion as q = q̄ ? �q, and let us determine
�q. Taking derivative:

q̇ = ˙̄q ? �q + q̄ ? �̇q =
1

2
q ? q!

Using ˙̄q = 1
2 q̄ ? q!r :

1

2
q̄ ? q!r ? �q + q̄ ? �̇q =

1

2
q̄ ? �q ? q!

Left-multiplying by q̄⇤ and solving for ˙�q, one gets:

�̇q =
1

2
�q ? q! � 1

2
q!r ? �q
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Linearizing quaternion kinematics II

Express now ~! = ~!r + �~! and remember the linearization of
�q as a function of the parameter ~a:

d

dt


1
~a/2

�
⇡ 1

2


1
~a/2

�
?


0

~!r + �~!

�
� 1

2


0
~!r

�
?


1
~a/2

�

Remebering:


q00
~q0

�
?


q0
~q

�
=


q00q0 � ~q0T ~q

q0~q0 + q00~q + ~q0 ⇥ ~q

�
, one

has:

d

dt


1
~a/2

�
⇡ 1

2


�~aT/2(~!r + �~!) + ~!T

r ~a/2
~!r + �~! + ~a/2⇥ (~!r + �~!)� ~!r � ~!r ⇥ ~a/2

�

Since we are linearizing k~akk�~!k ⇡ 0 because it is a double
product of small terms. Operating:

d

dt


1
~a/2

�
⇡ 1

2


0

�~! + ~a⇥ ~!r

�

This is: ~̇a ⇡ �~! + ~a⇥ ~!r . A quite simple expression. Thus the
reference angular velocity also influences ~a. 17 / 17
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Spacecraft attitude dynamics

Spacecraft attitude dynamics are given by the equations of
rotational dynamics. These describe the relation between
causes (torques exerted on the vehicle) and e↵ects (angular
velocity). Solved together with kinematics.
Main hypothesis: The vehicle is a rigid body (rigid-body
hypothesis). If there are flexible/mobile parts, the model
needs to be extended to include them. Thus we can define the
rotation of the body frame (fixed at the center of mass of the
body) w.r.t. the inertial frame, as in previous lessons.
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RIGID-BODY DYNAMICS 351

Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)
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Non-zero torque spins

Preliminary definition from Mechanics
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Angular momentum and Torque I
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

For each point of the body with mass dm, one has ~̈Rdm = d ~F .
Taking moment with respect to the center of mass B , we get

~⇢⇥ ~̈Rdm = ~⇢⇥ d ~F = d ~MB , and integrating over the volume
V , we get a relation involving the total moment of the forces

with respect to B (the total torque):
R
V
~⇢⇥ ~̈Rdm = ~MB .

Notice that these time-derivatives are considered w.r.t. the
inertial frame.
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

The absolute angular momentum with respect to B , ~�B , is

defined as: ~�B =
R
V
~⇢⇥ ~̇Rdm.

Note ~̇�B =
R
V
~̇⇢⇥ ~̇Rdm +

R
V
~⇢⇥ ~̈Rdm.

Since ~R = ~RC + ~⇢, replacing it in the first term we get:
~̇�B =

R
V
~̇⇢⇥ ~̇⇢dm +

R
V
~̇⇢⇥ ~̇Rcdm + ~MB

The first term is zero. The second verifiesR
V
~̇⇢⇥ ~̇Rcdm =

�
d

dt

R
V
~⇢dm

�
⇥ ~̇Rc = ~0.

Therefore ~̇�B = ~MB 4 / 59
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

The angular momentum ~�B verifies
~�B =

R
V
~⇢⇥ ~̇Rdm =

R
V
~⇢⇥ ~̇Rcdm+

R
V
~⇢⇥ ~̇⇢dm =

R
V
~⇢⇥ ~̇⇢dm.

Remember Coriolis’ equation
�
d

dt
~⇢
�
N
=

�
d

dt
~⇢
�
B
+ ~!B/N ⇥ ~⇢,

where N is an inertial frame and B the body axes. Then,�
d

dt
~⇢
�
N
= ~!B/N ⇥ ~⇢.

Therefore:
~�B =

R
V
~⇢⇥ (~!B/N ⇥ ~⇢)dm =

�
�
R
V
~⇢⇥~⇢⇥dm

�
~!B/N

Define the inertia tensor
I = �

R
V
~⇢⇥~⇢⇥dm =

R
V

⇥
(⇢T ~⇢)Id � ⇢~⇢T

⇤
dm 5 / 59
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

Thus ~�B = I · ~!B/N . The explicit expression of the inertia

tensor is I =

 R
V
(⇢22 + ⇢23)dm �

R
V

⇢1⇢2dm �
R
V

⇢1⇢3dm

�
R
V

⇢1⇢2dm
R
V
(⇢21 + ⇢23)dm �

R
V

⇢2⇢3dm

�
R
V

⇢1⇢3dm �
R
V

⇢2⇢3dm
R
V
(⇢21 + ⇢22)dm

�

Since the matrix is symmetric: it is diagonalizable. Thus one
can find the principal axes where I is diagonal:

I =

2

4
I1 0 0
0 I2 0
0 0 I3

3

5

The largest moment of inertia Ii is about an axis which is
denoted as major axis; the smallest, about the minor axis.
The remaining one is about the intermediate axis.
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Assume we have a vehicle composed of n parts, each of them
with known mass Mk , center of mass ~rck and inertia tensor
Ik . Then one can find the inertial tensor of the spacecraft as

I =
nX

k=1

h
Mk

⇣
k~rckk2Id � ~rck~r

T

ck

⌘
+ Ik

i

Note that ~rck is the vector joining the center of mass of the k

part with the whole spacecraft center of mass.

Spacecraft are formed by a number of structural elements so
this is a widely used formula. However, we will not need it in
general for our lessons.

7 / 59
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Fig. 6.2 Rigid body with a body-fixed reference frame B with its origin at the center
of mass.

Let !ω ≡ !ωB/N be the angular velocity vector of the rigid body in an inertial
reference frame N . The angular momentum vector !H of a rigid body about its
center of mass is then defined as

!H =
∫

!ρ × !̇R dm =
∫

!ρ × !̇ρ dm =
∫

!ρ × ( !ω × !ρ) dm (6.8)

as !R = !Rc + !ρ,
∫

!ρ dm = 0, !̇R ≡ {d !R/dt}N , and

!̇ρ ≡
{

d !ρ
dt

}

N
=

{
d !ρ
dt

}

B
+ !ωB/N × !ρ (6.9)

Note that {d !ρ/dt}B = 0 for a rigid body.
Let !ρ and !ω be expressed as

!ρ = ρ1!b1 + ρ2!b2 + ρ3!b3 (6.10a)

!ω = ω1!b1 + ω2!b2 + ω3!b3 (6.10b)

where {!b1, !b2, !b3} is a set of three orthogonal unit vectors, called basis vectors,
of a body-fixed reference frame B. The angular momentum vector described by
Eq. (6.8) can then be written as

!H = (J11ω1 + J12ω2 + J13ω3)!b1 + (J21ω1 + J22ω2 + J23ω3)!b2

+ (J31ω1 + J32ω2 + J33ω3)!b3 (6.11)

Kinetic energy is defined as T = 1
2

R
V
~̇⇢ · ~̇⇢dm.

Using
�
d

dt
~⇢
�
N
= ~!B/N ⇥ ~⇢, we get

T = 1
2

R
V
~̇⇢ · (~!B/N ⇥ ~⇢)dm = 1

2~!B/N ·
R
V
(~⇢⇥ ~̇⇢)dm =

1
2~!B/N · ~�B = 1

2~!B/N · I · ~!B/N .

In principal axes, if ~!B/N = [!1 !2 !3]T , one gets:

~�B =

2

4
!1I1

!2I2

!3I3

3

5

Thus:T =
!2
1I1 + !2

2I2 + !2
3I3

2 8 / 59
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Non-zero torque spins

Preliminary definition from Mechanics
Euler’s Equations

Euler’s Equations

Start from ~̇� = ~M. Since the time-derivative is in the inertial
frame, taking it in body axes we get:⇣

d

dt
~�
⌘

N

=
⇣

d

dt
~�
⌘

B

+ ~!B/N ⇥ ~� = ~M.

Replacing the expression of angular momentum in terms of
the inertia tensor:

�
d

dt
I · ~!B/N

�
B
+ ~!B/N ⇥

�
I · ~!B/N

�
= ~M

Using the rigid-body hypothesis
�
d

dt
I
�
B
= 0, we get:

I · ~̇!B/N + ~!⇥
B/NI · ~!B/N = ~M.

Developing in principal axes and writing ~M = [M1 M2 M3]T

I1!̇1 + (I3 � I2)!2!3 = M1

I2!̇2 + (I1 � I3)!1!3 = M2

I3!̇3 + (I2 � I1)!2!1 = M3

9 / 59
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Torque-Free rotation

Our first detailed study is of torque-free rotation, this is, when
torque is zero: ~M = ~0. Under this assumption, the angular
momentum of the system is preserved.

This does not ever happen in reality since there are always
some small perturbing torques (albeit they can be small).

We will see some analytical solutions but the most interesting
results are those concerning the stability of the rotation; in
particular, we will find the major axis rule.

We consider two cases: axisymmetric (two equal moments of
inertia: the spinning top) and asymmetric (the three moments
of inertia are di↵erent)

The totally symmetric case (I1 = I2 = I3) decouples Euler’s
equations and can be trivially solved (the resulting angular
velocities are constant and independent from each other).

10 / 59
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Stability. Major axis rule
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Axisymmetric case. Analytical solution.

Consider I1 = I2 = I , I3 6= I .
Euler’s equations now read:

I !̇1 + (I3 � I )!2!3 = 0

I !̇2 + (I � I3)!1!3 = 0

I3!̇3 = 0

First, we obtain !3 = Cst = n (spin rate of the spacecraft
about it symmetry axes). Define � = I�I3

I
n, denoted as the

“relative spin rate”. The first two equations result in

!̇1 � �!2 = 0

!̇2 + �!1 = 0

This is the ODE of a harmonic oscillator, whose solution is:

!1 = !1(0) cos�t + !2(0) sin�t

!2 = !2(0) cos�t � !1(0) sin�t
11 / 59
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Axisymmetric case. Analytical solution.

It is easy to see that !2
1 + !2

2 = Cst = !2
12, the so-called

transverse angular velocity. Thus, k!k =
q
!2
12 + n2 = Cst

and its third component is also constant. Therfore, ~! seen in
the body frame describes a cone about the body symmetry
axes, of angle � = arctan

�
!12
n

�
.

On the other hand ~� = ~Cst in the inertial frame by
conservation of angular momentum. We choose the z axis of
the inertial frame as pointing in the direction of ~� ( ~H in the
figure). In addition � = k~�k must be constant as well.
In body axes, ~� = [I!1 I!2 I3n]T , so that
~� · ~ebz = I3n = cos ✓�, this is, the angle between ~� and the
body z axis is constant; this angle, ✓, is the nutation angle. In
addition:

tan ✓ =

p
1 � cos2 ✓

cos ✓
=

p
�2 � I 23 n

2

I3n
=

I!12

I3n
=

I

I3
tan �

Exercise: prove that the angle between ~� y ~! is ✓ � � = cst. 12 / 59
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Axisymmetric case. Analytical solution.

Thus the situation is as in the figure (where ~H = ~�).
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6.5 Torque-Free Motion of an Axisymmetric Rigid Body

Most spin-stabilized spacecraft are nearly axisymmetric, and they rotate about
one of their principal axes. The stability of torque-free rotational motion of
such spin-stabilized spacecraft is of practical importance. The term “torque-
free motion” commonly employed in spacecraft attitude dynamics refers to the
rotational motion of a rigid body in the presence of no external torques.

Consider a torque-free, axisymmetric rigid body with a body-fixed reference
frame B, which has basis vectors {!b1, !b2, !b3}, and which has its origin at the center
of mass, as illustrated in Fig. 6.4. The reference frame B coincides with a set of
principal axes, and the !b3 axis is the axis of symmetry; thus, J1 = J2.

Euler’s rotational equations of motion of a torque-free, axisymmetric spacecraft
with J1 = J2 = J become

Jω̇1 − (J − J3)ω3ω2 = 0 (6.49)

Jω̇2 + (J − J3)ω3ω1 = 0 (6.50)

J3ω̇3 = 0 (6.51)

where ωi ≡ !bi · !ω are the body-fixed components of the angular velocity of the
spacecraft.

From Eq. (6.51), we have

ω3 = const = n (6.52)

where the constant n is called the spin rate of the spacecraft about its symmetry
axis !b3.

Defining the relative spin rate λ as

λ = (J − J3)n
J

Fig. 6.4 Torque-free motion of an axisymmetric rigid body.This justifies introducing Euler angles to describe the
movement, in the sequence (3,1,3), where one already knows
that ✓ = Cst.

n
��!
zn

S
✓�!
xS

S
0  �!
zS

0
BFS
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Axisymmetric case. Analytical solution.

For the sequence

n
��!
zn

S
✓�!
xS

S
0  �!
zS

0
BFS

the kinematics are, replacing ✓ = Cst:

!1 = �̇ sin ✓ sin + ✓̇ cos = �̇ sin ✓ sin 

!2 = �̇ sin ✓ cos � ✓̇ sin = �̇ sin ✓ cos 

!3 =  ̇ + �̇ cos ✓

Applying !2
1 + !2

2 = !2
12 we obtain: !12 = �̇ sin ✓. Thus

�̇ = !12
sin ✓ = Cst, the precession rate. Finally

 ̇ = n � �̇ cos ✓ = n � !12
tan ✓ = n � I3n

I
= n

I�I3
I

= � = Cst.

Similarly �̇ = !12
sin ✓ = I3n

I cos ✓ = I3( ̇+�̇ cos ✓)
I cos ✓ , from where

�̇ = I3 ̇
(I�I3) cos ✓

.
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Axisymmetric case. Geometrical interpretation.
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6.5 Torque-Free Motion of an Axisymmetric Rigid Body

Most spin-stabilized spacecraft are nearly axisymmetric, and they rotate about
one of their principal axes. The stability of torque-free rotational motion of
such spin-stabilized spacecraft is of practical importance. The term “torque-
free motion” commonly employed in spacecraft attitude dynamics refers to the
rotational motion of a rigid body in the presence of no external torques.

Consider a torque-free, axisymmetric rigid body with a body-fixed reference
frame B, which has basis vectors {!b1, !b2, !b3}, and which has its origin at the center
of mass, as illustrated in Fig. 6.4. The reference frame B coincides with a set of
principal axes, and the !b3 axis is the axis of symmetry; thus, J1 = J2.

Euler’s rotational equations of motion of a torque-free, axisymmetric spacecraft
with J1 = J2 = J become

Jω̇1 − (J − J3)ω3ω2 = 0 (6.49)

Jω̇2 + (J − J3)ω3ω1 = 0 (6.50)

J3ω̇3 = 0 (6.51)

where ωi ≡ !bi · !ω are the body-fixed components of the angular velocity of the
spacecraft.

From Eq. (6.51), we have

ω3 = const = n (6.52)

where the constant n is called the spin rate of the spacecraft about its symmetry
axis !b3.

Defining the relative spin rate λ as

λ = (J − J3)n
J

Fig. 6.4 Torque-free motion of an axisymmetric rigid body.n
��!
zn

S
✓�!
xS

S
0  �!
zS

0
BFS

Considering the sequence and taking into account the fact
that the nutation angle is constant and the other two angles
change uniformly, one can imagine the movement as the
rolling of one cone over another without slipping (with
constant angular speeds �̇ and  ̇); the point of contact is
where the angular velocity ~! lies. 15 / 59
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Axisymmetric case. Geometrical interpretation.
580  CHAPTER 10 Satellite attitude dynamics

illustrated in  Figure 10.4 , which also shows the   body cone   and   space cone  . The space cone is swept out in 
inertial space by the angular velocity vector as it rotates with angular velocity   ω  p   around  H   G  , whereas the 
body cone is the trace of   ω   in the body frame as it rotates with angular velocity   ω  s   about the  z  axis. From 
inertial space, the motion may be visualized as the body cone rolling on the space cone, with the line of 
contact being the angular velocity vector. From the body frame it appears as though the space cone rolls on 
the body cone.  Figure 10.4    graphically confi rms our deduction from Equation 10.23, namely, that preces-
sion and spin are in the same direction for prolate bodies and opposite in direction for oblate shapes. 

 Finally  , we know from Equations 10.24 and 10.25 that the magnitude  HG     of the angular momentum is 

  
HG xy oA C! "2 2 2 2ω ω

      

 Using   Equations 10.17 and 10.22, we can write this as 

  
HG p p pA C

A
C

A! " ! "2 2 2
2

2 2 2 2( ) ( )ω θ ω θ ω θ θsin cos sin cos








     

  so that we obtain a surprisingly simple formula for the magnitude of the angular momentum in torque-free 
motion,   

  
HG pA! ω   (10.27)     

        Example 10.1      
 A   cylindrical shell is rotating in torque-free motion about its longitudinal axis. If the axis is wobbling 
slightly, determine the ratios of  l / r  for which the precession will be prograde or retrograde.                     

z

HG

p

HG

s

Space cone
Body cone

Body cone

Space cone

z

s

(a) Prograde precession (b) Retrograde precession

A > C A < C

s

p

θ
θ

γ

γ

ω

sωω

ω
ω

ωω

ω

 FIGURE 10.4  
       Space and body cones for a rotationally symmetric body in torque-free motion. (a) Prolate body. (b) Oblate body.    

Remember tan � = tan ✓ I3
I
y �̇ = I3 ̇

(I�I3) cos ✓
. Two cases arise:

Prolate body (thin symmetry axis, I3 < I ): this is case (a).
Since � < ✓ the cones roll one outside the other and since the
signs of �̇ and  ̇ are equal the rotation is in the same direction
(prograde precession).
Oblate body (thick symmetry axis, I3 > I ): this is case (b).
Since � > ✓ the cones roll one inside the other and since the
signs of �̇ y  ̇ are opposite the rotation is in the opposite
direction (retrograde precession).
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Torque-free rotation of an asymmetrical body

In the asymmetrical case, there exists a major, minor and
intermediate axis. The equations cannot be solved in terms of
conventional functions.

I1!̇1 + (I3 � I2)!2!3 = 0

I2!̇2 + (I1 � I3)!1!3 = 0

I3!̇3 + (I2 � I1)!2!1 = 0

Some authors solve these equations by using Jacobi’s
“elliptical functions”. However, it is not easy to
understand/interpret these functions, so we take a more
“geometric” path.
Notice that, due to conservation of angular momentum, ~� is
constant (in inertial axes). Therefore k~�k = � is constant no
matter what axes are used to write ~�. In particular, in the
body frame, ~� = [I1!1 I2!2 I3!3]T , therefore
�2 = I

2
1!

2
1 + I

2
2!

2
2 + I

2
3!

2
3 = Cst. 17 / 59
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Torque-free rotation of an asymmetrical body

Similarly, in torque-free rotations the kinetic energy T is also
preserved. Which impliese 2T = I1!2

1 + I2!2
2 + I3!2

3 = Cst0

Therefore the components of the angular velocity, !1(t),
!2(t), !3(t), no matter their values, must satisfy

!2
1

�2

I 21

+
!2
2

�2

I 22

+
!2
3

�2

I 23

= 1

!2
1

2T
I1

+
!2
2

2T
I2

+
!2
3

2T
I3

= 1

These are the equations of two ellipsoids: the angular
momentum ellipsoid and the kinetic energy ellipsoid. Thus the
angular velocity vector must always lie in the intersection of
these two ellipsoids; these intersections are known as “polhode
curves”.
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Polhode curves

In general the curves, for given ellipsoids, are two disjoint,
closed curves.

130 EULERIAN MECHANICS CHAPTER 4

where
p

2IiT are the corresponding semi-axes. In order for the torque-free
rotation to satisfy both Eqs. (4.60) and (4.61), the energy ellipsoid and the mo-
mentum sphere must intersect. The intersection forms a trajectory of feasible
�(t) as illustrated in Figure 4.5. This geometrical interpretations is very use-
ful to make qualitative studies on the nature and limiting properties of large
rotations.

Momentum Sphere

Energy Ellipsoid

Trajectory of 
possible ( )! t

H1

H2

H3

Figure 4.5: General Intersection of the Momentum Sphere and the En-
ergy Ellipsoid

Clearly, for a given |H |, only a certain range of kinetic energy is possible.
For the current discussion, let us hold the angular momentum vector magnitude
constant and sweep the kinetic energy through its two extrema. Also, assume
that the inertia matrix entries Ii are ordered such that

I1 � I2 � I3 (4.62)

With this ordering of inertias, the largest kinetic energy ellipsoid semi-axisp
2I1T occurs about the b̂1 axis as shown in Figure 4.5, and the smallest semi-

axis is about the b̂3 axis. Eq. (4.61) shows that varying T will only uniformly
scale the corresponding kinetic energy ellipsoid. The overall shape and aspect
ratio of the ellipsoid will remain the same for each choice in T .

Three special energy cases are shown in Figure 4.6. Since the kinetic energy
ellipsoid and the momentum sphere must intersect, the smallest possible T would
be scaled the energy ellipsoid such that its largest semi-axis is equal to H =
|H |. The momentum sphere perfectly envelops the energy ellipsoid as shown in
Figure 4.6(i). The only points of intersection are at

BH = ±H b̂1 (4.63)

In two cases the intersection reduces to two points: when the
ellipsoids are tangent. These cases correspond to maxima or
minima of the energy. In addition, there is a saddle point
when the intermediate axes coincide, and the resulting curve
is called the separatrix. 19 / 59
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Polhode curves: special cases
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H1

H3

H2

Minimum
Energy
Ellipsoid

(i) Minimum Energy Case

H1

H3

H2

Sepratrix

(ii) Intermediate Energy Case

H1

H3

H2

Maximum
Energy
Ellipsoid

(iii) Maximum Energy Case

Figure 4.6: Special Cases of Kinetic Energy Ellipsoid and Momentum
Sphere Intersections
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Torque-free rotation of an asymmetrical body

Assume that I3 < I2 < I1 (if not re-index the axes). Define

I
⇤ = �2

2T . Subtracting the ellipsoid equations and multiplying
by �2, one gets:

I1!
2
1 (I1 � I

⇤) + I2!
2
2 (I2 � I

⇤) + I3!
2
3 (I3 � I

⇤) = 0

Note that if I ⇤ < I3 all terms are positive (for non-zero
angular speed) so they cannot add to zero. Similarly if I ⇤ > I1

all terms are negative. Thus, I ⇤ 2 [I3, I1]. For fixed �, this
implies that kinetic energy has to lie inside an interval. The
extrema are I

⇤ = I1 (minimal energy, implies !2 = !3 = 0 and
thus a rotation about the 1 axis, the major one) and I

⇤ = I3

(maximal energy, implies !1 = !2 = 0 and thus a rotation
about the 3rd axis, the minor oner)
The case I

⇤ = I2 has additional solutions besides pure
rotations about the 2 axis (!1 = !3 = 0); these are called
separatrices.
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Polhode curves for fixed �

If � (H in the figure) is fixed and we vary the energy, we
obtain all possible polhode curves over the surface of the
momentum ellipsoid, including the separatrices.
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Minimum
Energy

Maximum
Energy

Sepratrix

H3

H 2

H1

T =
H2

2I1

T <
H2

2 I2

T =
H 2

2I2

T >
H2

2 I2

T =
H 2

2I3

Figure 4.7: A Family of Energy Ellipsoid and Momentum Sphere Inter-
sections

drag. Let’s study what happens if a satellite is spun up about the axis of least
inertia b̂3. For a given angular momentum, this corresponds to the maximum
kinetic energy case. Since any real rigid body will loose energy over time simply
due to internal damping, this satellite’s energy is expected to decrease over time.
Figure 4.7 shows how the satellite will start to “wobble” about the b̂3 axis as
the energy ellipsoid is reduced. After some time the �(t) curves will cross the
sepratrix and the satellite will start to “wobble” about the axis of maximum
inertia b̂1. Ultimately, as the energy approaches the minimum energy ellipsoid,
the satellite will be spinning purely about the b̂1 axis. Therefore, under the
presence of a negative energy rate, only the spin about the axis of maximum
inertia is a stable spin. The pure spin case about b̂3 will become unstable over
time.

This behavior is demonstrated in nature in that all planets are essentially
spinning about their axis of maximum inertia. This fact was rediscovered during
early space explorations when Explorer 1 was launched into orbit spinning about
its axis of least inertia. It took less than a fraction of an orbit before it started
to tumble.

4.2.2 General Free Rigid Body Motion

In this section we would like to derive the general rotational equations of motion
for a rigid body free of any external torques. The attitude coordinates are chosen
to be the (3-2-1) Euler angles, also known as the yaw, pitch and roll angles
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Stability of spinning spacecraft about a principal axis

The simplest solutions of torque-free motion are pure
rotations (spins) about a principal axis. Next, we start from
the solution of equilibrium !̄3 = n = Cst and !̄1 = !̄2 = 0.
We study the stability of this equilibrium as a function of
whether the 3rd axis is major, minor or intermediate.
Let us perturb the equilibrium, defining !1 = �!1, !2 = �!2
and !3 = n + �!3. Substituting in Euler’s equations:

I1�!̇1 + (I3 � I2)�!2(n + �!3) = 0

I2�!̇2 + (I1 � I3)�!1(n + �!3) = 0

I3�!̇3 + (I2 � I1)�!2�!1 = 0

Neglecting second-order terms:

I1�!̇1 + n(I3 � I2)�!2 = 0

I2�!̇2 + n(I1 � I3)�!1 = 0

I3�!̇3 = 0
23 / 59
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Stability of spinning spacecraft about a principal axis

The equation of �!3 defines a marginally stable equilibrium:
the perturbed solutions don’t grow, but they don’t dissipate
either.
The equations for �!1 and �!2 can be combined as

�!̈1 +
n
2(I3 � I2)(I3 � I1)

I1I2
�!1 = 0

The stability of the solution to this equation depends on the
sign of (I3 � I2)(I3 � I1). For a positive sign, solutions are
oscillatory (again, they don’t grow or dissipate: marginally
stable). If the sign is negative, the solutions are exponential
and one of the solutions grows in time (unstable)
If 3 is the major axis: (I3 � I2)(I3 � I1) = + ⇥ + > 0: stable.
If 3 is the minor axis:(I3 � I2)(I3 � I1) = � ⇥ � > 0: stable.
If 3 is the intermediate axis:, (I3 � I2)(I3 � I1) = + ⇥ � < 0:
unstable.
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Stability of spinning spacecraft with energy dissipation

While the previous calculation is correct under a rigid-body
assumption (Euler’s Equations), real-life solids are not
perfectly rigid.
There is always some deviation from the rigid body that can
cause some energy dissipation (flexibility e↵ects, friction
between mobile parts, fuel sloshing). This modifies the
previous calculation as the system tends to go to an energy
minima.
Assume again I1 > I2 > I3. One idea (energy sink model) is
to, starting from physical principles (conservation of angular
momentum), find a minima of energy given the angular
momentum. This is, solve the mathematical minimization
problem

min I1!
2
1 + I2!

2
2 + I3!

2
3

subject to I
2
1!

2
1 + I

2
2!

2
2 + I

2
3!

2
3 = �2
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Stability of spinning spacecraft with energy dissipation

Using Lagrange multipliers:

L(!1,!2,!3,�) = I1!
2
1 + I2!

2
2 + I3!

2
3 + �(I 21!

2
1 + I

2
2!

2
2 + I

2
3!

2
3 � �2)

One has 0 = @L
@!i

= 2Ii!i (1 + �Ii ), i = 1, 2, 3
Therefore there are three solutions:

!2=!3=0, � = � 1
I1
, !1 =

�
I1
. T = �2

2I1
.

!1=!3=0, � = � 1
I2
, !2 =

�
I2
. T = �2

2I2
.

!1=!2=0, � = � 1
I3
, !3 =

�
I3
. T = �2

2I3
.

Comparing the values of the objective function (the energy),
clearly the minimum is given by the first solution (the second
is a saddle point and third one is the maximum). Thus the
only spin which is mathematically stable and at the same time
a minimum for the energy are rotations about the major axis.
Based on this argument, we can now state the major axis rule:
“For spacecraft with dissipation of energy, the only stable
spins are those about the major axis”.
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Stability of spinning spacecraft with energy dissipation

The geometrical e↵ect of the major axis rule is that polhodes
become a single closed spiral curve that goes from the
maximum of energy to the minimum of energy:

724 J. GUIDANCE VOL. 14, NO. 4

Reorientation Maneuver for Spinning Spacecraft

Christopher D. Rahn*
University of California, Berkeley, Berkeley, California 94720

and
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A spacecraft spinning about its minor axis in the presence of energy dissipation is directionally unstable.
Eventually, the spacecraft will reorient to a major axis spin. After the maneuver, the major axis spin rate can
be either positive or negative. Correspondingly, the orientation of the spacecraft relative to the inertially fixed
angular momentum vector is unpredictable. This paper demonstrates that the maneuver, when augmented with
two thruster firings based on gyro measurements, provides a desired final orientation.

Introduction

A SINGLE-body spacecraft spinning about its minor axis
in the presence of energy dissipation is directionally un-

stable.1 The spacecraft can be stabilized by active control, by
the jet damping of a rocket motor,2 or by dampers on a
controlled, despun platform,3 but removing these stabilizing
mechanisms causes the spacecraft to reorient and rotate about
its major axis due to the energy lost in fuel slosh and vibration.
This passive reorientation maneuver is called spin transition.

Spacecraft may rotate about their minor axis for several
reasons. First, launch vehicle fairing constraints often require
that the long and narrow axis of the spacecraft be aligned with

the longitudinal axis of the launch vehicle. Typically, the
launch vehicle spins longitudinally prior to separation, result-
ing in a minor axis spin for the spacecraft after separation.
Second, when a solid rocket motor raises the orbit, the rocket
motor and spacecraft combination spins about its minor axis

to increase stability during the firing. When the firing is com-
pleted, the combination undergoes spin transition unless ac-
tive control is used.

The spin transition maneuver is subject, however, to a limi-
tation. The orientation of the spacecraft relative to the iner-
tially fixed angular momentum vector at the end of the maneu-
ver cannot be determined a priori. The spacecraft can end up
with either a positive or a negative major axis spin. Physically,
this corresponds to two final attitudes that are 180 deg apart.
Many spacecraft have sensitive onboard instruments, which
must be shielded from the sun, or directional communication
equipment, which must point toward the Earth. In these cases,
it is desirable to ensure a final spin polarity.

There are techniques of optimally reorienting spacecraft
using thrusters4 and of acquiring attitude using momentum
wheels.5'6 In terms of fuel usage, the passive spin transition
maneuver is optimal, and momentum wheels, with their atten-
dant complexity, are not required. To make the maneuver
truly useful, however, the final spin polarity must be con-
trolled, requiring some fuel expenditure.

This paper presents a control system that guarantees a final
orientation after spin transition. The control system uses gyros
that determine when to fire thrusters, providing the desired
orientation.
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Specialist Conference, Stowe, VT, Aug. 7-10,1989; received Sept. 18,
1989; revision received Aug. 24, 1990; accepted for publication Sept.
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and Astronautics, Inc. All rights reserved.
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Dynamics
Two models of the spacecraft dynamics are used. The anal-

ysis model consists of a rigid body with an energy sink. For
simulation purposes, the spacecraft is modeled as a rigid body
with a spherical, dissipative fuel slug. The rigid body has three
rates o?i, co2, and o>3 about the major, intermediate, and minor
body axes, respectively. The fuel is modeled as a spherical slug
of inertia 7, which is surrounded by a viscous layer. Designat-
ing the relative rates between the spacecraft body and the fuel
slug as <TI, cr2, and a3, the equations of motion are written as

= (72 - /3)co2o>3

(72 -

(73 -

a\ = — o>i —

<72 = - ci2 -

cr3 = - oj3 -

Aa2 + T2

A<73 + T3

-I-

(la)

(Ib)

(Ic)

(Id)

(le)

(If)

where A is the viscous damping coefficient of the slug; /i, 72,
and 73 are principal moments of inertia of the spacecraft

0)2

Finish

(01

Separatrices

Fig. 1 Polhode for a typical spin transition. The path of the angular
velocity vector in body axis coordinates starts with a positive minor
axis spin and finishes with a negative major axis spin.
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Example: fuel sloshing

Consider a satellite with a spherical tank filled with viscous
fuel, so that the fuel (with inertia J and friction coe�cient �)
can be modelled as a “solid bubble” with its own angular
speed ~� = [�1 �2 �3]T relative to the satellite.
ExtraCstd from C.D. Rahn, P.M. Barba, “Reorientation
Maneuver for Spinning Spacecraft”, AIAA Journal of
Guidance, Dynamics and Control, Vol. 14, 1991.

(I1 � J)!̇1 + (I3 � I2)!2!3 = ��1

(I2 � J)!̇2 + (I1 � I3)!1!3 = ��2

(I3 � J)!̇3 + (I2 � I1)!2!1 = ��3

�̇1 + !̇1 + !2�3 � !3�2 = �
��1

J

�̇2 + !̇2 + !3�1 � !1�3 = �
��2

J

�̇3 + !̇3 + !1�2 � !2�1 = �
��3

J

By dissipation, any starting spin ends up a major axis spin;
however, it is not possible to know a priori the orientation of
the rotation, since the equations display strange (chaotics)
dynamics. 28 / 59
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Example: fuel sloshing

The fact that the equations have chaotic dynamics means
that the sense of rotation totally depends on the initial
condition, to the point that any change on the initial
condition, no matter how small, can produce a variation in the
sense of rotation.

Thus, to all practical e↵ect, it is not
possible to predict the final sense of
the rotation.

A plot in which one marks with the
same color the initial conditions
producing the same sense of rotation
becomes enormously complex, due to
this chaotic property of the equation.
These kind of plots are known as
fractals.
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Major axis rule. Additional comments.

The instability of minor axis spinners is, from the point of view
of time-scales, much slower than the instability of intermediate
axis spinners, depending on the rate of energy dissipation.

If one desires a major axis spin one can amplify energy
dissipation by adding dampers, such as nutation dampers
(pendula with added friction).

However, if for some reason one needs a minor axis spin this is
no issue if it is only required for a short period of time and
dissipation is not too large. Later the body will return to a
major axis spin naturally.

Important: the presence of mobile part such as inertia wheels
may change these theoretical results.
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Rotational dynamics with a wheel

Let us start with how Euler’s equations are modified by the
presence of k wheels.

For each wheel i , assumed axisymmetric, define IRi as its
momentum of inertia in the rotation direction ~ei and its
relative (to the spacecraft) angular speed as !Ri .

Since a wheel is symmetric, it does not change the distribution
of mass: total spacecraft inertia does not change at all.

The angular moment of the spacecraft + wheels is:
~� = I~!B/N +

P
k

i=0 ~ei IRi!Ri

Expressing the derivative ~̇� = ~M in the body frame one can
obtain the di↵erential equations of motion.

31 / 59

Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
E↵ect of a wheel on rotational dynamics

Three wheels in principal axes

If there is a wheel about each principal axis, the spacecraft

angular momentum is ~� = I~!B/N +

2

4
!R1IR1

!R2IR2

!R3IR3

3

5

Thus the dynamics is given by

I1!̇1 + (I3 � I2)!2!3 + IR1!̇R1 + IR3!R3!2 � IR2!R2!3 = M1

I2!̇2 + (I1 � I3)!1!3 + IR2!̇R2 + IR1!R1!3 � IR3!R3!1 = M2

I3!̇3 + (I2 � I1)!2!1 + IR3!̇R3 + IR2!R2!1 � IR1!R1!2 = M3

One needs to add the equations describen the wheels’ spin.
For instance, if for each axis an electric motor with (internal)
torque JRi drives the wheels, these equations would be

IR1(!̇1 + !̇R1) = J1

IR2(!̇2 + !̇R2) = J3

IR3(!̇3 + !̇R3) = J3
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One wheel about the 3rd axis

Assume that a spacecraft has an inertial wheel about the 3rd
axis, with inertia IR , and spinning at a velocity !R relative to
the spacecraft. It could even be a part of the spacecraft (see
dual spin-stabilization in lesson 7).

Angular momentum is � = [I1!1 I2!2 I3!3 + IR!R ]T .

Rotational dynamics become

I1!̇1 + (I3 � I2)!2!3 + IR!R!2 = 0

I2!̇2 + (I1 � I3)!1!3 � IR!R!1 = 0

I3!̇3 + IR !̇R + (I2 � I1)!2!1 = 0

One needs to add IR(!̇3 + !̇R) = J, where J is the torque
driving the wheel (if any).
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Spin stability with a wheel.

One can use the motor to produce a torque that mantains !R

constant. Then:

I1!̇1 + (I3 � I2)!2!3 + IR!R!2 = 0

I2!̇2 + (I1 � I3)!1!3 � IR!R!1 = 0

I3!̇3 + (I2 � I1)!2!1 = 0

New terms appear that modify the previous stability analysis.
Even the intermediate axis can be made stable! Repeating the
steps for mathematical stability:

�!̈1 +
(n(I3 � I2) + IR!R) (n(I3 � I1) + IR!R)

I1I2
�!1 = 0

Now if 1 is the minor axis and 2 the major, the condition for
stability is n(I3 � I2) + IR!R > 0, this is, !R > I2�I3

IR
n.

Next, we repeat the analysis in the case of energy dissipation
by using the energy sink method.
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Spin stability with a wheel and energy dissipation.

Let us minimize the energy fixing the angular momentum
(since it is a torque-free motion).

Then

2T = I1!
2
1 + I2!

2
2 + I3!

2
3 + IR!

2
R
,

�2 = I
2
1!

2
1 + I

2
2!

2
2 + (I3!3 + IR!R)

2

The last term of the energy can be ignored since it is a
constant and does not influence the minimization process.
The problem is posed as

min I1!
2
1 + I2!

2
2 + I3!

2
3

subject to I
2
1!

2
1 + I

2
2!

2
2 + (I3!3 + IR!R)

2 = �2
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Spin stability with a wheel and energy dissipation.

Using Lagrange multipliers

L(!1,!2,!3,�) = I1!
2
1 + I2!

2
2 + I3!

2
3 + �(I 21!

2
1 + I

2
2!

2
2 + (I3!3 + IR!R )

2 � �2)

One gets 0 = @L
@!i

= 2Ii!i (1 + �Ii ), i = 1, 2 y

0 = @L
@!3

= 2I3(!3 + �(I3!3 + IR!R))
Several solutions exist, we take

!1 = !2 = 0, !3 = n, � = � n

I3n + IR!R

.

To identify if it is a minimum or not, we use the following
theorem: Let L(x , y , z) = F (x , y , z) + �G (x , y , z) be the
Lagrangian of the system so that F is the function to
minimize and G (x , y , z) = 0 the constraint. Then, construct
the matrices:

H3 =

2

6664

0 @G

@x

@G

@y

@G

@x

@2
L

@x2
@2

L

@x@y

@G

@y

@2
L

@x@y

@2
L

@y2

3

7775
, H4 =

2

6666664

0 @G

@x

@G

@y

@G

@z

@G

@x

@2
L

@x2
@2

L

@x@y

@2
L

@x@z

@G

@y

@2
L

@x@y

@2
L

@y2
@2

L

@y@z

@G

@z

@2
L

@x@z

@2
L

@y@z

@2
L

@z2

3

7777775
,
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Spin stability with a wheel and energy dissipation.

If x⇤, �⇤ is the critical point under analysis (i.e., the point
that makes the first derivatives of L zero), to determine if
there is a minimum or not, it follows that if:

1 @G
@x (x

⇤, y⇤, z⇤) 6= 0
2 Det(H3(x⇤, y⇤, z⇤,�⇤)) < 0
3 Det(H4(x⇤, y⇤, z⇤,�⇤)) < 0

then there is a minimum at the critical point (su�cient
condition, not necessary!).
In our particular case, to verify the theorem, define x = !3,
y = !1, z = !2. Then:

H3 =

2

4
0 2I3(I3n + Ir!R ) 0

2I3(I3n + Ir!R ) 2I3(1 + �I3) 0
0 0 2I1(1 + �I1)

3

5 ,

H4 =

2

664

0 2I3(I3n + Ir!R ) 0 0
2I3(I3n + Ir!R ) 2I3(1 + �I3) 0 0

0 0 2I1(1 + �I1) 0
0 0 0 2I2(1 + �I2)

3

775 .
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Spin stability with a wheel and energy dissipation.

The (su�cient) conditions for a minimum are:
1 @G

@x (x
⇤, y⇤, z⇤) = 2I3(I3n + Ir!R) 6= 0 (since if the other two

angular speeds are zero, one has I3n + Ir!R = ±� 6= 0).
2 Det(H3(x⇤, y⇤, z⇤,�⇤)) = �8I 23 (I3n + Ir!R)2I1(1 + �I1) < 0
3 Det(H4(x⇤, y⇤, z⇤,�⇤)) = Det(H3)2I2(1 + �I2) < 0

Two conditions are then reached

1 + �I1 > 0,

1 + �I2 > 0.

Using the value of � that we derived before:

1 � I1n

I3n + IR!R

> 0,

1 � I2n

I3n + IR!R

> 0.

One has to be careful with the sign of I3n + IR!R since when
solving for !R the sign of the inequality can change.
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Spin stability with a wheel and energy dissipation.

Instead of solving for !R we can simplify the fraction,
reaching:

(I3 � I1)n + IR!R

I3n + IR!R

> 0,

(I3 � I2)n + IR!R

I3n + IR!R

> 0,

Two cases:
1 If I3n + IR!R > 0, this is, !R > � I3n

IR
, the conditions reduce to

!R > (I1�I3)n
IR

, !R > (I2�I3)n
IR

.

2 If I3n + IR!R < 0, this is, !R < � I3n

IR
, the conditions reduce

to!R < (I1�I3)n
IR

, !R < (I2�I3)n
IR

.

Notice that these conditions are similar (but more restrictive)
than the ones obtained without energy dissipation!

39 / 59

Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
E↵ect of a wheel on rotational dynamics

Spin stability with a wheel: Example.

Consider a satellite with a wheel in the 3rd axis with:

I =

2

4
10 0 0
0 30 0
0 0 20

3

5 kg · m2, n = 60 r.p.m., IR = 2 kg · m2.

Need to study the required spinning speed for the weel for the
3rd axis (intermediate) to be stable.
With the rigid-body hypothesis (no dissipation):
(n(I2 � I3) � IR!R) (n(I3 � I1) + IR!R) < 0. Two cases

1 First parenthesis is negative, second positive. Conditions
become: !R > n(I2�I3)

IR
= 300 r.p.m. and

!R > n(I3�I1)
IR

= �300 r.p.m.. Since the first condition is more
stringent: !R > 300 r.p.m..

2 Second parenthesis is negative, first positive. Conditions
become: !R < n(I2�I3)

IR
= 300 r.p.m. and

!R < n(I3�I1)
IR

= �300 r.p.m.. Now the second condition is
more restrictive, therefore !R < �300 r.p.m..

Thus, the spin is stable if !R > 300 r.p.m. or if
!R < �300 r.p.m., but unstable if !R 2 [�300, 300] r.p.m. 40 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Analytical/geometrical resolution.
Stability. Major axis rule
E↵ect of a wheel on rotational dynamics

Spin stability with a wheel and energy dissipation:

Example.

With energy dissipation, two cases show up again:
1 If I3n + IR!R > 0, this is !R > � I3n

IR
= �600 r.p.m., then

!R > (I1�I3)n
IR

= �300 r.p.m., !R > (I2�I3)n
IR

= 300 r.p.m.. The
third condition is more restrictive so !R > 300 r.p.m..

2 If I3n + IR!R < 0, this !R < � I3n

IR
= �600 r.p.m., then

!R < (I1�I3)n
IR

= �300 r.p.m., !R < (I2�I3)n
IR

= 300 r.p.m.. The
first condition is the more stringent, thus !R < �600 r.p.m..

Thus, the spin is stable if !R > 300 r.p.m. or if
!R < �600 r.p.m., but unstable if !R 2 [�600, 300] r.p.m..

Notice in !R 2 [�600, �300] r.p.m. the two models di↵er;
however, the model with dissipation is more realistic, so the
conclusion is that the rigid-body model is failing in that
interval of !R !
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Non-zero torque spins

In practice there are always some perturbation torques. While
typically of small magnitude, they might be persistent (such
as gravity gradient which acts in the full orbit at all times).
They might be large as well, for instance in the case of
imperfectly aligned thrusters during manoeuvres.

We analyze two cases:
Perturbation torque acting on a spinning solid (gyroscopic
e↵ect).
Gravity gradient stability.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

Hypothesis:
Axisymmetrical spacecraft: I1 = I2 = I .
Spinning spacecraft with speed n about axis 3, this is, !3 = n.
Perturbation torque M1 constant about the axis 1. No torque
about the other axes.

Example: spin-stabilized spacecraft making a propulsive
manoeuvre with slight unalignment of the thruster axis with
the center of mass. If there is no spin, the resulting torque
causes an immediate rotation of the vehicle and failure of the
manoeuvre.

We will see that a spinner acquires the so-called “gyroscopic
rigidity” and the perturbing torque produces a slight
movement of precession and nutation of the spin axis.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

Euler’s equations reduce to

I !̇1 + (I3 � I )!2!3 = M1

I !̇2 + (I � I3)!1!3 = 0

I3!̇3 = 0

We find immediately !3 = Cst = n and define � = I�I3
I

n y

µ = M1
I
. Two equations remain to be solved:

!̇1 � �!2 = µ

!̇2 + �!1 = 0

Taking time derivative in the first equation and substituting
the second:

!̈1 + �2!1 = 0

Harmonic oscillator: !1(t) = A sin�t + B cos�t.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

Substituting the solution in the 1st equation
!2(t) = A cos�t � B sin�t � µ

� .
Replacing initial conditions !1(0) and !2(0) we reach:
B = !1(0), A = !2(0) +

µ
� . Thus:

!1 =

✓
!2(0) +

µ

�

◆
sin�t + !1(0) cos�t =

µ

�
sin�t

!2 =

✓
!2(0) +

µ

�

◆
cos�t � !1(0) sin�t �

µ

�
=

µ

�
(cos�t � 1)

where finally we have replaced !1(0) = !2(0) = 0.
Use now Euler angles

I
✓1�!
xn

S
✓2�!
yS

S
0 ✓3�!
zS

0
BFS

Developing the kinematic equations we stop at:

✓̇1 =
!1 cos ✓3 � !2 sin ✓3

cos ✓2

✓̇2 = !1 sin ✓3 + !2 cos ✓3

✓̇3 = !3 + (�!1 cos ✓3 + !2 sin ✓3) tan ✓2
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

Take zero initial conditions for the angles.
With the expectation that ✓1 and ✓2 should be rather small
whereas ✓3 has to be large (it is the angle of the spin axis) we
replace cos ✓2 ⇡ 1 y tan ✓2 ⇡ ✓2 (verify later!). Reaching:

✓̇1 = !1 cos ✓3 � !2 sin ✓3

✓̇2 = !1 sin ✓3 + !2 cos ✓3

✓̇3 = !3 + ✓2 (�!1 cos ✓3 + !2 sin ✓3) = !3 � ✓2✓̇1

Assume as well !3 � ✓2✓̇1, then we find ✓3 = !3t = nt.
The equations for ✓1 y ✓2 are:

✓̇1 = !1 cos nt � !2 sin nt

✓̇2 = !1 sin nt + !2 cos nt

Substituting the values of !1 and !2 previously found:

✓̇1 =
µ

�
sin�t cos nt � µ

�
(cos�t � 1) sin nt =

µ

�
(sin (�� n) t + sin nt)

✓̇2 =
µ

�
sin�t sin nt +

µ

�
(cos�t � 1) cos nt =

µ

�
(cos (�� n) t � cos nt)

46 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Spinning body subject to a constant external torque.

By simple integration and using the initial condition we reach

✓1 =
µ

�

✓
1 � cos (� � n) t

� � n
+

1 � cos nt

n

◆

✓2 =
µ

�

✓
sin (� � n) t

� � n
�

sin nt

n

◆

Defining Ap = µ
�(n��) y !p = n � �, amplitude and frequency

of precession, respectively, and An = µ
�n y !n = n, amplitude

and frequency of nutation, respectively. The solution is then
written as:

✓1 = �Ap

�
1 � cos!pt

�
+ An (1 � cos!nt)

✓2 = Ap sin!pt � An sin!nt

Superposition of two circular movements: epicycloid.
Amplitudes are given by Ap = M1

(I�I3)n2
I

I3
y An = M1

(I�I3)n2
, and

the gyroscopic e↵ect increases as n, I3/I , and the di↵erence
I � I3 increases. The amplitudes should be small for the
assumptions to be true: large n.
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.

The most important perturbation torque is gravity gradient,
as it is always present in orbit.

Simplification: consider an asymmetrical spacecraft in circular
orbit with radius R around an spherical planets; elliptical
orbits and/or deviations from speherical gravity (i.e. the J2

perturbation) introduce higher-order terms that we do not
analyze (they produce the so-called librations: oscillations
around the stable orientation).

Angular velocity is defined as usual in body axes with respect
to inertial, but the selected Euler angles are w.r.t. the orbit
frame, which is non-inertial. This subtlety has to be taken
into account in the analysis.

The situation is as in the figure of the next slide. N axes are
inertial, A axes are from the orbit frame (to be defined) and B
the body axes (principal axes of inertia).
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.
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Fig. 6.8 Rigid body in a circular orbit.

The gravity-gradient torque about the spacecraft’s mass center is then
expressed as

!M =
∫

!ρ × d !f = −µ

∫ !ρ × !Rc

| !Rc + !ρ|3
dm (6.143)

and we have the following approximation:

| !Rc + !ρ|−3 = R−3
c

{

1 + 2( !Rc · !ρ)

R2
c

+ ρ2

R2
c

}− 3
2

= R−3
c

{

1 − 3( !Rc · !ρ)

R2
c

+ higher-order terms

}

(6.144)

where Rc = | !Rc| and ρ = | !ρ|. Because
∫

!ρ dm = 0, the gravity-gradient torque
neglecting the higher-order terms can be written as

!M = 3µ

R5
c

∫
(!Rc · !ρ) ( !ρ × !Rc) dm (6.145)

This equation is further manipulated as follows:

!M = −3µ

R5
c

!Rc ×
∫

!ρ( !ρ · !Rc) dm

= −3µ

R5
c

!Rc ×
∫

!ρ !ρ dm · !Rc

= −3µ

R5
c

!Rc ×
[ ∫

ρ2 Î dm − Ĵ
]

· !Rc

= −3µ

R5
c

!Rc ×
∫

ρ2 Î dm · !Rc + 3µ

R5
c

!Rc × Ĵ · !Rc

= 3µ

R5
c

!Rc × Ĵ · !Rc

Orbit frame: centered in the spacecraft. The direction z (~a3)
points towards Earth’s center (rotation:yaw). The direction x

(~a1) along the orbital velocity (rotation:roll). The direction y

(~a2) opposite to the orbital angular momentum ~h (orthogonal
to the orbital plane, rotation:pitch).
These axis spin with respect to the inertial frame N about the

�~a2 axis with angular speed n =
q

µ�
R3 .

Thus the relationship between frames is as follows

N
�nt�!
yn

A
✓3�!
zA

S
✓2�!
yS

S
0 ✓1�!
xS

0
B
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.
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Fig. 6.8 Rigid body in a circular orbit.

The gravity-gradient torque about the spacecraft’s mass center is then
expressed as

!M =
∫

!ρ × d !f = −µ

∫ !ρ × !Rc

| !Rc + !ρ|3
dm (6.143)

and we have the following approximation:

| !Rc + !ρ|−3 = R−3
c

{

1 + 2( !Rc · !ρ)

R2
c

+ ρ2

R2
c

}− 3
2

= R−3
c

{

1 − 3( !Rc · !ρ)

R2
c

+ higher-order terms

}

(6.144)

where Rc = | !Rc| and ρ = | !ρ|. Because
∫

!ρ dm = 0, the gravity-gradient torque
neglecting the higher-order terms can be written as

!M = 3µ

R5
c

∫
(!Rc · !ρ) ( !ρ × !Rc) dm (6.145)

This equation is further manipulated as follows:

!M = −3µ

R5
c

!Rc ×
∫

!ρ( !ρ · !Rc) dm

= −3µ

R5
c

!Rc ×
∫

!ρ !ρ dm · !Rc

= −3µ

R5
c

!Rc ×
[ ∫

ρ2 Î dm − Ĵ
]

· !Rc

= −3µ

R5
c

!Rc ×
∫

ρ2 Î dm · !Rc + 3µ

R5
c

!Rc × Ĵ · !Rc

= 3µ

R5
c

!Rc × Ĵ · !Rc

The matrix C
B

A
and its di↵erential kinematic equation is:

C
B

A
=

2

4
c✓2c✓3 c✓2s✓3 �s✓2

�c✓1s✓3 + s✓1s✓2c✓3 c✓1c✓3 + s✓1s✓2s✓3 s✓1c✓2
s✓1s✓3 + c✓1s✓2c✓3 �s✓1c✓3 + c✓1s✓2s✓3 c✓1c✓2

3

5

2

4
✓̇1
✓̇2
✓̇3

3

5 =
1

c✓2

2

4
c✓2 s✓2s✓1 s✓2c✓1
0 c✓1c✓2 �s✓1c✓2
0 s✓1 c✓1

3

5 ~!B

B/A
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.
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Fig. 6.8 Rigid body in a circular orbit.

The gravity-gradient torque about the spacecraft’s mass center is then
expressed as

!M =
∫

!ρ × d !f = −µ

∫ !ρ × !Rc

| !Rc + !ρ|3
dm (6.143)

and we have the following approximation:

| !Rc + !ρ|−3 = R−3
c

{

1 + 2( !Rc · !ρ)

R2
c

+ ρ2

R2
c

}− 3
2

= R−3
c

{

1 − 3( !Rc · !ρ)

R2
c

+ higher-order terms

}

(6.144)

where Rc = | !Rc| and ρ = | !ρ|. Because
∫

!ρ dm = 0, the gravity-gradient torque
neglecting the higher-order terms can be written as

!M = 3µ

R5
c

∫
(!Rc · !ρ) ( !ρ × !Rc) dm (6.145)

This equation is further manipulated as follows:

!M = −3µ

R5
c

!Rc ×
∫

!ρ( !ρ · !Rc) dm

= −3µ

R5
c

!Rc ×
∫

!ρ !ρ dm · !Rc

= −3µ

R5
c

!Rc ×
[ ∫

ρ2 Î dm − Ĵ
]

· !Rc

= −3µ

R5
c

!Rc ×
∫

ρ2 Î dm · !Rc + 3µ

R5
c

!Rc × Ĵ · !Rc

= 3µ

R5
c

!Rc × Ĵ · !Rc

First let us derive the gravity gradient torque. For each dm of
the spacecraft, there is an acting (gravity) force

d ~F = �µ~R
R3 dm = �µ(~Rc+~⇢)

|~Rc+~⇢|3
dm.

The moment of the forces is therefore:

~M =

Z

V

⇢⇥ d ~F = �µ

Z

V

⇢⇥
~Rc + ~⇢

|~Rc + ~⇢|3
dm = �µ

Z

V

⇢⇥ ~Rc

|~Rc + ~⇢|3
dm
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.
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Fig. 6.8 Rigid body in a circular orbit.

The gravity-gradient torque about the spacecraft’s mass center is then
expressed as

!M =
∫

!ρ × d !f = −µ

∫ !ρ × !Rc

| !Rc + !ρ|3
dm (6.143)

and we have the following approximation:

| !Rc + !ρ|−3 = R−3
c

{

1 + 2( !Rc · !ρ)

R2
c

+ ρ2

R2
c

}− 3
2

= R−3
c

{

1 − 3( !Rc · !ρ)

R2
c

+ higher-order terms

}

(6.144)

where Rc = | !Rc| and ρ = | !ρ|. Because
∫

!ρ dm = 0, the gravity-gradient torque
neglecting the higher-order terms can be written as

!M = 3µ

R5
c

∫
(!Rc · !ρ) ( !ρ × !Rc) dm (6.145)

This equation is further manipulated as follows:

!M = −3µ

R5
c

!Rc ×
∫

!ρ( !ρ · !Rc) dm

= −3µ

R5
c

!Rc ×
∫

!ρ !ρ dm · !Rc

= −3µ

R5
c

!Rc ×
[ ∫

ρ2 Î dm − Ĵ
]

· !Rc

= −3µ

R5
c

!Rc ×
∫

ρ2 Î dm · !Rc + 3µ

R5
c

!Rc × Ĵ · !Rc

= 3µ

R5
c

!Rc × Ĵ · !Rc

Since |~⇢| ⌧ |~Rc |, |~Rc + ~⇢|�3 ⇡ 1
R3
c

� 3
~Rc ·~⇢
R5
c

. Then:

~M ⇡ � µ

R3
c

Z

V

⇢⇥ ~Rcdm + 3
µ

R5
c

Z

V

⇢⇥ ~Rc(~Rc · ~⇢)dm

= 3
µ

R5
c

Z

V

⇢⇥ ~Rc(~Rc · ~⇢)dm = �3
µ

R5
c

~R⇥
c

✓Z

V

~⇢~⇢Tdm

◆
~Rc

= 3
µ

R5
c

~R⇥
c I ~Rc � 3

µ

R5
c

~R⇥
c

✓Z

V

(|~⇢|2)dm
◆
~Rc = 3

µ

R5
c

~R⇥
c I ~Rc
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.

Thus ~M = 3 µ
R5
c

~R⇥
c I ~Rc . In the A axes, ~RA

c = [0 0 � Rc ]T .

Thus, in the B frame:

~RB

c = C
B

A
~RA

c = �Rc

2

4
�s✓2
s✓1c✓2
c✓1c✓2

3

5

Thus:

~MB = 3
µ

R3
c

2

4
0 �c✓1c✓2 s✓1c✓2

c✓1c✓2 0 s✓2
�s✓1c✓2 �s✓2 0

3

5

2

4
I1 0 0
0 I2 0
0 0 I3

3

5

2

4
�s✓2
s✓1c✓2
c✓1c✓2

3

5

Operating:

~MB = 3n2

2

4
0 �c✓1c2✓2 s✓1c✓2

c✓1c✓2 0 s✓2
�s✓1c✓2 �s✓2 0

3

5

2

4
�s✓2I1
s✓1c✓2I2
c✓1c✓2I3

3

5

= 3n2

2

4
�c✓1c2✓2s✓1(I2 � I3)
c✓1c✓2s✓2(I3 � I1)
s✓1c✓2s✓2(I1 � I2)

3

5
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Gravity gradient.

Replacing the gravity gradient torque in Euler’s equations, we
get ODEs for the angular velocity:

I1!̇1 =
⇥
!2!3 � 3n2c✓1c

2✓2s✓1
⇤
(I2 � I3)

I2!̇2 =
⇥
!1!3 + 3n2c✓1c✓2s✓2

⇤
(I3 � I1)

I3!̇3 =
⇥
!2!1 + 3n2s✓1c✓2s✓2

⇤
(I1 � I2)

On the other hand since
~!B

B/N = ~!B

B/A + ~!B

A/N = ~!B

B/A + C
B

A
~!A

A/N , there follows:

~!B

B/A =

2

4
!1

!2

!3

3

5 � C
B

A

2

4
0

�n

0

3

5 =

2

4
!1

!2

!3

3

5+ n

2

4
c✓2s✓3

c✓1c✓3 + s✓1s✓2s✓3
�s✓1c✓3 + c✓1s✓2s✓3

3

5

Then the kinematic ODEs are
2

4
✓̇1
✓̇2
✓̇3

3

5 =
1

c✓2

2

4
c✓2 s✓2s✓1 s✓2c✓1
0 c✓1c✓2 �s✓1c✓2
0 s✓1 c✓1

3

5

2

4
!1

!2

!3

3

5+
n

c✓2

2

4
s✓3

c✓2c✓3
s✓2s✓3

3

5
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Stable orientation

System of 6 nonlinear ODEs. Making zero the derivatives we
can find the equilibria:

0 =
h
!2!3 � 3n2c✓1c

2✓2s✓1
i
(I2 � I3)

0 =
h
!1!3 + 3n2c✓1c✓2s✓2

i
(I3 � I1)

0 =
h
!2!1 + 3n2s✓1c✓2s✓2

i
(I1 � I2)

~0 =
1

c✓2

2

4
c✓2 s✓2s✓1 s✓2c✓1
0 c✓1c✓2 �s✓1c✓2
0 s✓1 c✓1

3

5

2

4
!1
!2
!3

3

5 +
n

c✓2

2

4
s✓3

c✓2c✓3
s✓2s✓3

3

5

One equilibrium is !1 = !3 = 0, !2 = �n, ✓1 = ✓2 = ✓3 = 0,.
Warning:there are other possible equilibria (i.e. ✓1 = ⇡).
If we are close to the equilibrium and to analyze its stability,
we can consider small angles and linealize the equations,
finding

!̇1 = �
h
n!3 + 3n2✓1

i
(I2 � I3)

!̇2 = 3n2✓2(I3 � I1)

!̇3 = �n!1(I1 � I2)

✓̇1 = !1 + n✓3

✓̇2 = !2

✓̇3 = !3 � n✓1
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Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Stable orientation

Taking a derivative in the angle equations
✓̈1 = !̇1 + n✓̇3

✓̈2 = !̇2

✓̈3 = !̇3 � n✓̇1

Using these equations to eliminate the !i ’s we find
I1✓̈1 = �

h
n✓̇3 + 4n2✓1

i
(I2 � I3) + nI1✓̇3

I2✓̈2 = 3n2✓2(I3 � I1)

I3✓̈3 = �n(✓̇1 � n✓3)(I1 � I2) � nI3✓̇1

The second equation is stable if I3 < I1. The first and third
are more challenging. Writing the system matrix:

d

dt

2

664

✓1
✓3
✓̇1
✓̇3

3

775 =

2

66664

0 0 1 0
0 0 0 1

4n2
I3�I2

I1
0 0 n

I3�I2+I1
I1

0 n
2 I1�I2

I3
n
I2�I1�I3

I3
0

3

77775

2

664

✓1
✓3
✓̇1
✓̇3

3

775

Define k1 =
I2�I3
I1

y k3 =
I2�I1
I3

. Since I1 + I2 > I3, I2 + I3 > I1,
I1 + I3 > I2, one gets k1, k3 2 [�1, 1].

56 / 59



Rotational dynamics
Torque-Free rotation

Non-zero torque spins

Constant external torque.
Gravity gradient. Stable orientation.

Stable orientation

The matrix writes
d

dt

2

664

✓1
✓3
✓̇1
✓̇3

3

775 =

2

664

0 0 1 0
0 0 0 1

�4n2k1 0 0 n(1 � k1)
0 �n

2
k3 n(k3 � 1) 0

3

775

2

664

✓1
✓3
✓̇1
✓̇3

3

775

Studying the eigenvalues of the matrix, we find the
characteristic polynomial:
�4 + �2n2(1 + k1(3 + k3)) + 4n4k1k3 = 0, cuya solución es:

� = ±n

s
�(1 + k1(3 + k3)) ±

p
(1 + k1(3 + k3))2 � 16k1k3
2

Eigenvalues are stable (non-positive real part) if and only if
the two options insde the square root are real and negative,
this is: �(1+ k1(3+ k3))±

p
(1 + k1(3 + k3))2 � 16k1k3 < 0.

This only happens if:
�(1 + k1(3 + k3)) < 0, this is, 1 + k1(3 + k3) > 0.p

(1 + k1(3 + k3))2 � 16k1k3 is real, this
is,(1 + k1(3 + k3))2 � 16k1k3 > 0.
16k1k3 > 0 (if not there would be a positive number inside the
root) 57 / 59
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Plotting the conditions in a chart:
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Fig. 6.9 Gravity-gradient stability plot.

The preceding results for linear stability of a rigid body in a circular orbit can
be summarized using a stability diagram in the (k1, k3) plane, as shown in Fig. 6.9.
For a further treatment of this subject, see Hughes [2].

Problems

6.10 Consider the sequence of C1(θ1) ← C3(θ3) ← C2(θ2) from the LVLH ref-
erence frame A to a body-fixed reference frame B for a rigid spacecraft in
a circular orbit.
(a) Verify the following relationship:




"b1
"b2
"b3



 =




c θ2 c θ3 s θ3 −s θ2 c θ3

−c θ1 c θ2 s θ3 + s θ1 s θ2 c θ1 c θ3 c θ1 s θ2 s θ3 + s θ1 c θ2

s θ1 c θ2 s θ3 + c θ1 s θ2 −s θ1 c θ3 −s θ1 s θ2 s θ3 + c θ1 c θ2








"a1

"a2

"a3





where c θi = cos θi and s θi = sin θi.
(b) Derive the following kinematic differential equation:




θ̇1
θ̇2
θ̇3



 = 1
cos θ3




cos θ3 −cos θ1 sin θ3 sin θ1 sin θ3

0 cos θ1 −sin θ1

0 sin θ1 cos θ3 cos θ1 cos θ3








ω1

ω2

ω3



 +




0
n
0





(c) For small attitude deviations from LVLH orientation, show that the lin-
earized dynamic equations of motion, including the products of inertia,

From 16k1k3 > 0, we obtain k1 and k3

with the same sign.

Since I3 < I1, one gets that
k1 � k3 > 0.

if k1 > k3 > 0 we obtain “Lagrange’s
region ” (right-upper triangle).

There is another region (known as
“De Bra-Delp”) obtained from
(1 + k1(3 + k3))2 � 16k1k3 > 0.
However it is sensitive to energy
dissipation, which makes it unstable.
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In summary:
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Fig. 6.9 Gravity-gradient stability plot.

The preceding results for linear stability of a rigid body in a circular orbit can
be summarized using a stability diagram in the (k1, k3) plane, as shown in Fig. 6.9.
For a further treatment of this subject, see Hughes [2].

Problems

6.10 Consider the sequence of C1(θ1) ← C3(θ3) ← C2(θ2) from the LVLH ref-
erence frame A to a body-fixed reference frame B for a rigid spacecraft in
a circular orbit.
(a) Verify the following relationship:




"b1
"b2
"b3



 =




c θ2 c θ3 s θ3 −s θ2 c θ3

−c θ1 c θ2 s θ3 + s θ1 s θ2 c θ1 c θ3 c θ1 s θ2 s θ3 + s θ1 c θ2

s θ1 c θ2 s θ3 + c θ1 s θ2 −s θ1 c θ3 −s θ1 s θ2 s θ3 + c θ1 c θ2








"a1

"a2

"a3





where c θi = cos θi and s θi = sin θi.
(b) Derive the following kinematic differential equation:




θ̇1
θ̇2
θ̇3



 = 1
cos θ3




cos θ3 −cos θ1 sin θ3 sin θ1 sin θ3

0 cos θ1 −sin θ1

0 sin θ1 cos θ3 cos θ1 cos θ3








ω1

ω2

ω3



 +




0
n
0





(c) For small attitude deviations from LVLH orientation, show that the lin-
earized dynamic equations of motion, including the products of inertia,

The practical stable zone corresponds
to k1 > k3 > 0, which in turn implies
that I2 > I1 and I2 > I3. Before we
already obtained I3 < I1. Thus axis 2
(orthogonal to the orbital plane) must
be the major axis, axis 3 (pointing to
the planet) the minor axis of inertia,
and axis 1 (in the direction of orbital
velocity) the intermediate.

Careful: the angles at the equilibrium
are 0o but they can also be 180o (the
“opposite” attitude is also stable!).

How many stable equilibria? How
many unstable equilibria?
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Error as an stochastic process
Estimation: Kalman filtering

Attitude estimation

The (dynamic) estimation of attitude (classicaly known simply
as attitude estimation) requires the use of kynematic models,
gyro measurements, and Kalman filter, as well as
complementary sensors (measuring a direction).

Gyros measure the angular velocity !B

B/I w.r.t. the inertial
frame. One can recover the attitude by using this
measurement to integrate the kinematic di↵erential equations.
Unfortunately, small errors acumulate over time generating a
certain drift in the estimation; thus it is always necessary to
use additional sensors to improve the measurement.

To better understand how errors acumulate, one needs to
model it as an stochastic (random) process, and use the
propagation equations.

Notation: in this lesson, arrows will not be used for vectors.
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Stochastic Processes

A stochastic process (or stochastic variable) is a random
variable X (t) whose distribution evolves (changes) with time.
Estimation errors are modelled as this.

Thus, mean and covariance also change with time: m(t),
⌃(t).

For a process, one can define the autocorrelation as
R(t, ⌧) = E [X (t)X (⌧)T ]. Autocorrelation allows to model
how the past history of X influences its present value.

Gaussian process: A Gaussian process verifies
X (t) ⇠ Nn(m(t),⌃(t)), this is, it is distributed as a
multivariate normal whose mean and covariance evolve with
time.

3 / 33
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White noise.

White noise: It is the process ⌫(t) verifying:
E [⌫(t)] = 0.
E [⌫(t)⌫(t)T ] = Q.
R(t, ⌧) = E [⌫(t)⌫(⌧)T ] = �(t � ⌧)Q, where �(x) is 1 if x = 0
and 0 otherwise.

The last condition means that the value of white noise at
present is independent of its value in any previous instant.

Gaussian white noise: It is a process verifying the previous
conditions and in addition, being Gaussian.

A good model for sensor errors is �✏(t) = b + D⌫, where ⌫ is
Gaussian white noise. The value of b is the mean of the error
(bias), which sometimes is also modelled as a process itself
(albeit slowly varying).
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Propagation of error. Continuous case

Consider a di↵erential equation such as

ẋ = Ax + D⌫,

where ⌫ is Gaussian white noise with covariance Q, and the
initial condition is also a Gaussian: x0 ⇠ Nn(m0(t),P0(t)).
This is called a stochastic di↵erential equation (the simplest
possible one). Then one has that x is a Gaussian process,
x ⇠ Nn(m(t),P(t)), with mean and covariance evolving as
follows:

ṁ = Am,

Ṗ = AP + PA
T + DQD

T ,

m(0) = m0,

P(0) = P0
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Propagation of error. Discrete case

Consider a discrete equation of the type

xk+1 = Axk + Dbk ,

where bk is Gaussian white noise with covariance Qk , and the
initial condition is also a Gaussian: x0 ⇠ Nn(m0(t),P0(t))This
is called a stochastic discrete process (the simplest possible
one). Then one has that xk is a Gaussian process,
xk ⇠ Nn(mk(t),Pk(t)), with mean and covariance evolving as
follows:

mk+1 = Amk ,

Pk+1 = APkA
T + DQkD

T ,
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1-D example: gyro drift

When one has gyro measurement, one needs to integrate the
kinematic di↵erential equations with the measurement.

To easily grasp the concept of “error as a process”, let us
analyze the easiest possible case: a single degree of freedom in
rotation. Thus, there is a single angle ✓, whose kinematic
di↵erential equation is

✓̇ = !

A gyro produces a measurement of ! which we can denote by
!̂; for simplification purposes, assume we have a continuous
measurement (it will be fast but not really continuous). In
reality, it will not be exactly !, but it’d rather be corrupted by
some noise (which we model as Gaussian white noise, with
variance Q related to the quality of the gyro) ⌫:

!̂ = ! � ⌫
7 / 33
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1-D example: gyro drift

If one tries to estimate ✓ (denote the estimation as ✓̂) from !̂
and assuming we know some estimation of its initial value ✓̂0,
one would just write:

˙̂✓ = !̂, ✓̂(0) = ✓̂0

Thus the estimation error �✓ = ✓ � ✓̂ verifies:

�✓̇ = ! � !̂ = ⌫

Assuming some initial error �✓(0) ⇡ N(0,P0), one finds by
applying the previous theory that the error
�✓(t) ⇡ N(m(t),P(t)), with:

ṁ = 0,m(0) = 0 �! m(t) = 0, Ṗ = Q,P(0) = P0 �! P = P0+Qt

Thus, even if the mean of the error is always zero, the
variance grows linearly in time and eventually blows up, thus
this estimator is useless in the medium-long term (but note
error is small in the short term if P0 was small to begin with). 8 / 33
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External measurement
Now assume one has external measurements of the angle with
an additional sensor. When time t = tk (this is at certain time
instants) one gets ✓̂(tk), which we denote as ✓̂m

k
, with some

other device (which also should have some associated error,
thus ✓̂m

k
= ✓k � ✏, where ✏ is white noise with variance R .

Since time in-between measurements could be large, maybe it
is not a good idea to ignore the gyro and say ✓̂(t) = ✓̂m

k
for

t 2 [tk , tk+1).
A possible idea is to reset the estimator of the previous slide
when t = tk , this is, combining the measures as follows:

˙̂✓ = !̂, ✓̂(tk) = ✓̂m
k
, t 2 [tk , tk+1),

Thus every new external measurement resets the initial
condition of the di↵erential equation and one integrates again.
It is easy to see that the estimation error now verifies
�✓ ⇡ N(m(t),P(t)), with m(t) = 0 and Ṗ = Q, for
t 2 [tk , tk+1), with P(tk) = R , thus P = R + Q(t � tk). 9 / 33
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter

The resetting idea makes the error maximum just before a
measurement. The error would be P = R + Q(tk+1 � tk)
right at that time instant.

The problem with resetting is that it neglects the previous
estimation from the di↵erential equation, when in-between
measurements it does not grow so large (it is short term). The
idea of Kalman filtering is to combine the estimation from the
di↵erential equation (called the “a priori” estimation obtained
from a “propagation step”) with the external measurement in
an “update step” to obtain the “best possible combination”
(called the “a posteriori” estimation). The combination is
best in the sense that it minimizes the covariance.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter

Some notation: estimation before the measurement is called a
priori and denoted as ✓̂�

k
.

Estimation after the measurement is the a posteri estimation,
denoted as ✓̂+

k
and it is computed as:

✓̂+
k
= ✓̂�

k
+ K (✓̂m

k
� ✓̂�

k
)

where K is the Kalman gain and the parenthesis is the
di↵erence between the external measurement and the a priori
estimation.

K is computed to minimize the covariance of the a posteriori
error.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter

Covariance a priori is called P
�
k
.

Remember the formulas for combination of normals from
Lesson 3 (slide 32).

A posteriori, computing the covariance of ✓+
k
:

P
+
k

= (1� K )2P�
k
+ K

2
R

Take derivative w.r.t. K and make it zero to find a minimizer:

0 = �2(1� K )P�
k
+ 2KR , thus K =

P
�
k

P
�
k
+R

.

Then covariance a posteriori becomes with that value of K :

P
+
k

=
P
�
k
R

P
�
k
+ R

It can be seen that P+
k

is less than both R and P
�
k

(since both
are positive numbers): thus one gets to improve estimation by
using all the available information in the best way!
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter

Summarizing the algorithm:
Initialization: For t0 = t = 0 start with ✓+0 = ✓̂0 and P

+
0 = P0.

Propagation: For t 2 [tk , tk+1), k = 0, . . . , one integrates
from the last a posteriori estimation both the estimation and
the covariance of the error

˙̂✓ = !̂, ✓̂(tk) = ✓̂+
k
, Ṗ = Q, P(tk) = P

+
k
,

Update: When t = tk+1 set ✓̂�
k+1 = ✓̂(tk+1) and

P
�
k+1 = P(tk+1), and one gets the external measurement

✓̂m
k+1. Apply the KF:

✓̂+
k+1 = ✓̂�

k+1 + K (✓̂med

k+1 � ✓̂�
k+1),

where K =
P

�
k+1

P
�
k+1+R

, also P
+
k+1 =

P
�
k+1R

P
�
k+1+R

.

Increase k and repeat the propagation step.
13 / 33
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter: dependence on process/measurement noise

If the measurement of the gyro is of very bad quality (Q is
very large) then P

�
k

! 1, one can see tha then P
+
k

! R ,

K ! 1, and therefore ✓̂+
k
! ✓̂m

k
(this is the resetting method:

one takes the external measurement ignoring the result of
integrating the di↵erential equation).

If the external measurement is of very bad quality (R is very
large), then P

+
k

! P
�
k
, K ! 0, and thus ✓̂+

k
! ✓̂�

k
(the

estimation is just the result of integrating as if there was no
external measurement).

If it happens that P�
k

! R , this is, the a priori estimation and
the external measurement have the same level of error, then

P
+
k

! R/2, K ! 1/2, and then ✓̂+
k
! ✓̂k+✓̂�

k

2 (one takes the
average between the integration step and the external
measurement; note that the error is halved).
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter: additional considerations

This is a considerable simplification because only a 1-D linear
case has been considered.

Next the n-D linear case will be studied, the the nonlinear
case (addressed by linearization), and finally a special case
involving quaternions.

In any case, conceptually all are the same: one integrates the
kinematic di↵erential equation with the gyroscopes and when
obtaining an external measurement, the Kalman algorithm is
used to weight the a priori estimation and the measurement.

In aircraft and missiles Kalman Filtering is used to integrate
the use of IMUs (gyros+ accelerometers) with external
measurements such as GPS.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

Kalman Filter for linear systems

Next the KF will be explained for linear systems which are
continuous with discrete measurement.

All systems are in practice discrete, however, this explanation
is simpler conceptually speaking and can be easily
implemented in a lab setting.

In the nomenclature of KF, a system is known as a “process”.

Note that the following development is conceptually very
similar to the 1-D example, but more abtruse in terms of
notation (and the number of involved matrices).

KF is used in many engineering contexts (e.g. navigation,
orbital mechanics, tracking...). It is a very useful tool to know.
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

System model (linear case)

PROCESS: The process is continuous
ẋ(t) = A(t)x(t) +B(t)u(t) +D(t)✏(t), where x is a Gaussian
process of dimension nx , A(t) is a matrix (that could be
time-varying) of dimension nx ⇥ nx , ✏(t) is Gaussian white
noise of dimension n✏ and convariance Q(t) (process noise),
and D(t) is a matrix es una matriz (that could be
time-varying) of dimension nx ⇥ n✏. u(t) if it exists is some
input (e.g. gyro measurement) of dimension nu and B(t) is of
dimension nx ⇥ nu.
MEASUREMENT: In discrete times t = tk a measurement z
is taken, defined as follows: z(tk) = Hkx(tk) + ⌫(tk), where z

is of dimension nz , Hk is a matrix (that could be time-varying)
of dimension nz ⇥ nx , and ⌫(tk) is Gaussian white noise of
dimension n⌫ and convariance Rk (measurement noise).
In addition ⌫(tk) and ✏(t) should be independent and the
initial condition of x is x(t0) ⇠ Nnx (x̂0,P0). 17 / 33
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

System model (linear case)

Summarizing:

ẋ(t) = A(t)x(t) + B(t)u(t) + D(t)✏(t),

z(tk) = Hkx(tk) + ⌫(tk),

E [✏(t)] = E [⌫(tk)] = 0,

E [✏(t)✏T (⌧)] = �(t � ⌧)Q(t),

E [⌫(tk)⌫
T (tj)] = �kjRk ,

E [✏(t)⌫T (tj)] = 0,

x(t0) ⇠ Nnx (x̂0,P0).

Define the estimation (in t) of x(t) as x̂(t).
Define the covariance of the estimation error as
P(t) = E [(x(t)� x̂(t))(x(t)� x̂(t))T ].
The goal of KF is, using the above model, and from the
measurements z(tk), obtain the best possible estimation, this
is, the value of x̂(t) that minimizes P(t).
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF I

If there are no measurements one can take x̂ as the mean of
the process; then, x(t) ⇠ Nnx (x̂(t),Pk), where:

˙̂x(t) = A(t)x̂(t) + B(t)u(t),

Ṗ = A(t)P + PA
T (t) + D(t)Q(t)DT (t).

The idea of the KF is that this is the best we can do until we
get a new measurement at t = tk , z(tk). Denote the
estimation until then (the “a priori” estimation) as x̂�(tk)
and the covariance of the error as P�

k
.

Now if the estimation and measurement were perfect, one
would have z(tk) = Hk x̂

�(tk). However, since this is not the
case, one updates the estimation (obtaining the “a posteriori”
estimation) proportionally to the discrepance between what
we expect to measure and what we really measure:
x̂
+(tk) = x̂

�(tk) + Kk(z(tk)� Hk x̂
�(tk)).
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF II

In x̂
+(tk) = x̂

�(tk) + Kk(z(tk)� Hk x̂
�(tk)) we don’t know

Kk , which is the Kalman gain. This is determined to
guarantee that he covariance of x̂+(tk), P

+
k
, is as small as

possible.

Compute P
+
k
: P+

k
= E [(x(tk)� x̂

+(tk))(x(tk)� x̂
+(tk))T ],

and replacing x̂
+(tk):

P
+
k

= E

✓
x(t

k
) � x̂

+(t
k
)
◆ ✓

x(t
k
) � x̂

+(t
k
)
◆

T
�

= E

✓
x(t

k
) � x̂

�(t
k
) � K

k
(z(t

k
) � H

k
x̂
�(t

k
)
◆

⇥
✓
x(t

k
) � x̂

�(t
k
) � K

k
(z(t

k
) � H

k
x̂
�(t

k
))

◆
T
�

Substituting z(tk) = Hkx(tk) + ⌫(tk):

P
+
k

= E

h⇣
x(tk ) � x̂

�(tk ) � Kk (Hkx(tk ) + ⌫(tk ) � Hk x̂
�(tk )

⌘

⇥
⇣
x(tk ) � x̂

�(tk ) � Kk (Hkx(tk ) + ⌫(tk ) � Hk x̂
�(tk ))

⌘
T
�

20 / 33



Error as an stochastic process
Estimation: Kalman filtering

1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF III

Simplifying terms:

P
+
k

= E

h⇣
(I � KkHk )(x(tk ) � x̂

�) � Kk⌫(tk )
⌘

⇥
⇣
(I � KkHk )(x(tk ) � x̂

�) � Kk⌫(tk )
⌘
T
�

= (I � KkHk )P
�
k

(I � KkHk )
T + KkRkK

T

k

One needs to find Kk to minimize the previous expression.
However one cannot “minimize a matrix” (what does that
even mean?). However, since the diagonal of the covariance
matrix is the individual variances, one idea is to minimize the
trace of the matrix.

The following mathematical relations help a lot:

@Tr[ABAT]

@A
= 2BAT ,

@Tr[AB]

@A
= B
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1-D Kalman Filter example
General linear Kalman Filter
EKF and MEFK

KF III

Using these relations:

Tr[P+
k
] = Tr[Kk(Rk + HkP

�
k
H

T

k
)KT

k
]� 2Tr[KkHkP

�
k
]

Thus:

@Tr[P+
k
]

@Kk

= 2(Rk + HkP
�
k
H

T

k
)KT

k
� 2HkP

�
k

Equating to zero:

K
T

k
= (Rk + HkP

�
k
H

T

k
)�1

HkP
�
k

Therefore we find an expression for the optimal Kalman gain

Kk = P
�
k
H

T

k
(Rk + HkP

�
k
H

T

k
)�1

And substituting in P
+
k

to find the minimum we get

P
+
k

= (I � KkHk)P
�
k
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KF algorithm

Summarizing the algorithm:
1 (Initialization): In t = tk , we start from x̂

+(tk) and P
+(tk). If

k = 0 we take x̂
+(t0) = x̂0 y P

+
0 = P0.

2 (Propagation): For t 2 (tk , tk+1), use the process model:

˙̂x = A(t)x̂ + B(t)u(t), x̂(tk) = x̂
+(tk)

Ṗ = A(t)P + PA
T (t) + D(t)Q(t)DT (t), P(tk) = P

+(tk)

3 (Update): In t = tk+1 we get z(tk+1), call x̂�(tk+1) = x̂(tk+1)
and P

�(tk+1) = P(tk+1). Compute the Kalman gain:

Kk+1 = P
�
k+1H

T

k+1

�
Hk+1P

�
k+1H

T

k+1 + Rk+1

��1
. With z(tk+1)

compute the a posteriori estimation:

x̂
+(tk+1) = x̂

�(tk+1) + Kk+1(z(tk+1)� Hk+1x̂
�(tk+1)),

P
+
k+1 = (I � Kk+1Hk+1)P

�
k+1.

4 Iterate for the next value of k .
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About measurements

Note: Measurements may change in the di↵erent tk ’s (more
or less measurements).

This is reflected in changes in Hk (it can even change
dimension).
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Kalman Filter for nonlinear systems

Next the EKF will be explained for nonlinear systems which
are continuous with discrete measurement.

The main tool is to linearize around the estimation.

Unfortunately convergence is not guaranteed.

If the initial estimation is good, the errors are not too large,
and the measurements are of decent quality, it should work.
However it is very dependent on the quality of the matrices Q
and R .
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System model (nonlinear case)

The model is more general:

ẋ(t) = f (x , u, t) + D(t)✏(t),

zk = h(xk , tk) + ⌫(tk),

E [✏(t)] = E [⌫(tk)] = 0,

E [✏(t)✏T (⌧)] = �(t � ⌧)Q(t),

E [⌫(tk)⌫
T (tj)] = �kjRk ,

E [✏(t)⌫T (tj)] = 0,

x(t0) ⇠ Nnx (x̂0,P0).

Define the matrices and vectors: F (x̂(t), t) = @f (x ,u,t)
@x

���
x=x̂ ,u

,

�zk = zk � h(x̂k , tk), Hk(x̂k) =
@h(x ,tk )

@x

���
x=x̂k

.
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EKF algorithm

The EKF is as follows:
1 (Initialization): In t = tk , we start from x̂

+(tk) and P
+(tk). If

k = 0 we take x̂
+(t0) = x̂0 y P

+
0 = P0.

2 (Propagation): For t 2 (tk , tk+1), use the (nonlinear) process
model:

˙̂x = f (x̂ , u, t), x̂(tk) = x̂
+(tk)

Ṗ = F (x̂(t), t)P + PF
T (x̂(t), t) + D(t)Q(t)DT (t), P(tk) = P

+(tk)

3 (Update): In t = tk+1 we get z(tk+1), call x̂�(tk+1) = x̂(tk+1)
and P

�(tk+1) = P(tk+1). Compute
�zk+1 = zk+1 � h(x̂�

k+1, tk+1) and Hk+1 = Hk(x̂
�
k+1, tk+1).

Compute the Kalman gain:

Kk+1 = P
�
k+1H

T

k+1

�
Hk+1P

�
k+1H

T

k+1 + Rk+1

��1
. Then:

x̂
+(tk+1) = x̂

�(tk+1) + Kk+1�zk+1,

P
+
k+1 = (I � Kk+1Hk+1)P

�
k+1.

4 Iterate for the next value of k .
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Multiplicative Extended Kalman Filter (MEKF)

This is specific for attitude estimation.

The EKF can be altered to take into account that the
quaternions cannot be linearized in the standard way, but
rather using the quaternion error (in a multiplicative way).
Then one gets the MEKF.

1 Assume one has gyros in the 3 axis, so that angular velocity
!̂B

B/N is estimated, with white noise error of covariance Q.
This is assumed as continouous.

2 At instants tk one gets measurements of n directions in body
axes v̂B

i
, so that vB

i
= C

B

N
v
N

i
and v

B

i
= v̂

B

i
+ ✏i for

i = 1, . . . , n. ✏i is Gaussian white noise with covariance Ri .

With only measurements one could use TRIAD or the q
algorithm.

With only gyros the estimation would be ˙̂q = 1
2q ? q!̂.
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Multiplicative Extended Kalman Filter (MEKF)

To linearize kinematics remember the quaternion error
q = q̂ ? �q, with

�q(a) =
1p

4 + kak2


2
a

�
, ȧ ⇡ ⌫ + a⇥ !̂ = �!̂⇥

a+ ⌫.

Thus one can study the covariance of the vector a which
represents the error:

Ṗ = �!̂⇥
P + P!̂⇥ + Q, P(0) = P0
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Multiplicative Extended Kalman Filter (MEKF)

From the estimated quaternion q̂ one can get ĈB

N
(q̂)

(Euler-Rodrigues).
Call �zi the discrepance between measurement and expected
measurement: �zi = v̂

B

i
� Ĉ

B

N
(q̂)vN

i
. If everything was perfect

then �zi = 0.
Measurement is not pefect: v̂B

i
= v

B

i
� ✏i .

Estimation is not perfect: ĈB

N
= C

B̂

N
= C

B̂

B
C

B

N
.

Thus �zi = v
B

i
� C

B̂

B
v
B

i
� ✏i .

Remember that from the relationship between the error
quaternion and the small angles DCM: C B̂

B
= I � a

⇥, thus
�zi = �a

⇥
v
B

i
� ✏i = (vB

i
)⇥a� ✏i .

Thus we have n measurements of error in the form
�zi = Hia� ✏i , where Hi ⇡ (v̂B

i
)⇥. (NOTE: take only two

rows to avoid invertibility issues). The covariance of the
measurement is Ri .
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Multiplicative Extended Kalman Filter (MEKF)

Use the a priori (�) and a posteriori (+) notation. From
integration we had q̂

� with error a� whose covariance is P�.

With the measurements available from

�z =

"
�z1
.
.
.

�zn

#
,H =

"
H1

.

.

.
Hn

#
,R =

"
R1

. . .
Rn

#

Using the measurements a+ = a
� + K (z � Ha

�), but since
the mean of the error is zero, a� = 0, thus: a+ = K�z , where
K is the Kalman gain, computed as
K = P

�
H

T (HP�
H

T + R)�1. Covariance is updated as
P
+ = P

� � KHP
�.

With a
+ update q̂:q̂+ = q̂

� ? �q = q̂
� ?


2
a
+

�
1p

4+ka+k2

This procedure is iterated.
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Multiplicative Extended Kalman Filter (MEKF)

Summary. Initial data: q̂0, P0, Q, Ri . One considers !̂
continuous. Ocassionally, one gets measurements and thus
can compute �zi = v̂

B

i
� Ĉ

B

N
(q̂)vN

i
.

1 Initialize and compute q̂ and P :

˙̂q =
1

2
q ? q!̂, q(0) = q0,

Ṗ = �!̂⇥
P + P!̂⇥ + Q, P(0) = P0

2 At time t = tk one gets measurements, call q̂� = q̂(tk)
and P

� = P(tk). Compute �z , H, R . Compute
K = P

�
H

T (HP�
H

T + R)�1. Compute a
+ = K�z .

Update q̂
+ = q̂

� ? �q = q̂
� ?


2
a
+

�
1q

4+ka+k2
, P

+ = P
� � KHP

�.

3 Keep integrating the equations from the a posteri
estimations until more measurements arrive:

˙̂q =
1

2
q ? q!̂, q(tk ) = q

+,

Ṗ = �!̂⇥
P + P!̂⇥ + Q, P(tk ) = P

+

4 When new measurements arrive, go back to 2. 32 / 33
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Multiplicative Extended Kalman Filter (MEKF)

Additional ideas:
Don’t forget to renormalize q̂(t) if modulus goes away from
unity.
The covariance matrix P(t) must be symmetric. One can
“symmetrize” by forcing P = 1/2(P + P

T ), or compute only a
triangular matrix and impose the rest is the transpose.
The Kalman gain is optimal only for the linearized system. If
estimation has large errors, the filter may diverge.
One can and should include gyro bias in the estimation.
In practice it is not so easy to obtain Q and R so some
simulation/experiments are required.

Other filtering algorithms exist. MEKF is “simple” and
flexible but not necessarily the best (this is a research field).

In a lab we will test the MEKF with a cell phone.
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Attitude control systems. Passive methods.
Control of a spin stabilized satellite

Attitude control

The attitude control subsystem of satellites can be divided, in
general, in two families:

Spin-stabilized satellites: using the gyroscopic e↵ect/major axis
rule to mantain an inertial direction (which would be the major
axis). Cheap and simple but only the major axis can be
stabilized (unless wheels are used).
Three-axis stabilized satellites: they use some kind of active
control to maintain the attitude with some orientation w.r.t.
some reference frame.

Satellites can potentially use the two types of control,
depending on the phase of the mission (for instance
interplanetary probes).

Another possible method is the use of gravity gradient, which
does not require control (in principle), but it is not very
accurate.
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Attitude control

Another classification of attitude control methods is in two
kinds: active and passive.

We interpret active in the sense of requiring additional use of
energy and some command logic (requiring some
computational power).
Whereas a passive control system does rely on some
natural/physical e↵ect to achieve stabilization (e.g. the major
axis rule).

Nevertheless these two classes sometimes overlap as for
instance to start the rotation of a spin-stabilized satellite (a
passive kind of stabilization) some kind of command and
energy contribution is required.

Thus all satellites in the end should have some kind of active
system.

3 / 14

Attitude control systems. Passive methods.
Control of a spin stabilized satellite

Modifying the direction of the rotation axis: coning
Slowing the rotation: yo-yo device

Control of a spin stabilized satellite

By the major axis rule, we know that a satellite spinning along
its major axis is stable; in addition, we know that its response
to external perturbations is a small nutation/precession
movement that would end up dissipating.
A spin-stabilized stallite can have a rather simple control
system, with the following goals:

1 Initiate or increase rotation.
2 Increase the stability of the satellite.
3 Modify the direction of the rotation axis.
4 Slow down or completely stop.

The first goal is trivial with thrusters or even considering the
initial spin due to the launch.

The second goal can be achieved with nutation dampers that
increase energy dissipation and thus strengthen the major axis
rule (see Lesson 5 and 8).

In the rest of the lesson we study goals 3 and 4.
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Modifying the direction of the rotation axis

A simple way to modify the direction of a rotation axis is to
stop the rotation, modify the axis, and then start spinning
again. However, this procedure would be expensive and slow.
Another procedure, known as the “coning” manoeuvre, is
explained next.

To simplify, consider an axisymmetrical spacecraft
(I1 = I2 = I < I3) and consider we can perform impulsive
manoeuvres that instantaneously modify the angular
momentum, namely, apply an impulse �� by using thrusters.

Let us consider the vehicle rotating only along axis 3 (major
axis) with angular velocity n, so that ~! and ~� are aligned.

Remember (Lesson 5) when we studied the gyroscopic e↵ect,
if we apply a perpendicular torque to the axis 3, we get a
precession and nutation movement of the body axis 3.
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Modifying the direction of the rotation axis

To simplify, consider that we can directly apply an impulse in
~�, so that ~�f = ~�i +�~�. After that, the movement is free
again.

In Lesson 5 we studied that the free movement of an
axisymmetrical satellite rotating around its simmetry axis was
a precession movement with fixed nutation, so that ~! rotates
describing a cone around the angular momentum ~�.

Thus, with this hypothesis of instantaneous change of angular
momentum, we simplify the nutation which also changes
instantaneously and stays constant, so we can use the exact
solution of the free movement of an axisymmetrical body.
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Coning
Consider that we want to displace the rotation axis an angle ✓.
Apply a �~� so that ~� has an angle of ✓/2 with the angular
velocity. This causes that the speed describes a cone around
the new ~� with angle ✓/2, and when it has gone 180o around
the cone it has rotated a total angle ✓ w.r.t. its former
position. Then apply a �~� such that the final ~� is again
coincident with the angular speed. Note that in the figure,
HG = ~�.

602  CHAPTER 10 Satellite attitude dynamics

illustrated in  Figure 10.10   . Recall from Section 9.4 that to change the angular momentum of the spacecraft 
requires applying an external moment, 

  

∆
∆

H MG G

t

dt!
0
∫

      

 Thrusters   may be used to provide the external impulsive torque required to produce an angular momentum 
increment  ∆HG1

    normal to the spin axis. Since the spacecraft is spinning, this induces coning (preces-
sion) of the spacecraft about an axis at an angle of   θ  /2 to the direction of  HG0

   . Since the external couple is 
normal to the  z  axis, the maneuver produces no change in the  z  component of the angular velocity, which 
remains   ω   0 . However, after the impulsive moment, the angular velocity comprises a spin component   ω  s   and 
a precession component   ω  p  . Whereas before the impulsive moment   ω  s        !        ω   0 , afterwards, during coning, the 
spin component is given by Equation 10.20, 

  
ω ωs

A C
A

!
"

0
      

 The   precession rate is given by Equation 10.22, 

  
ω

ω
θp

C
A

! 0

2cos( )/
  (10.94)      

 Notice   that before the impulsive maneuver, the magnitude of the angular momentum is  C ω   0 . Afterwards, 
it has increased to 

  
H A

C
G p! !ω

ω
θ

0

2cos( )/       

HG1

HG2

HGfHGo

T

T
T

T

∆
∆

/2θ
θ /2

 FIGURE 10.10  
       Impulsive coning maneuver.    
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Coning

From the figure: ��1 = ��2 = � tan ✓/2, so the total
��coning = 2� tan ✓/2. The final angular momentum es equal
to the initial one (but in the intermediate position it is slightly
larger: �

cos ✓/2).

The time one takes to perform the manoeuvre is ⇡ divided by
the precession angular speed: t = ⇡

�̇
.

From Lesson 5 (free movement of axisymmetrical spacecraft)

�̇ = I3n

I cos ✓/2 = �
I cos ✓/2 , thus t =

⇡I cos ✓/2
� .

During that time, the body would rotate w.r.t. its symmetry
axis (Lesson 5), an angle

 = t� = ⇡I cos ✓/2
�

n(I�I3)
I

= ⇡(I�I3) cos ✓/2
I3

.

In general this angle is not 180 degrees (unless
(I�I3) cos ✓/2

I3
= 1) thus one has to use a di↵erent set of

thrusters to get to the final position.
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Multiple coning

An idea to reduce the fuel consumption (and break down large
angles of rotation of the spin axis) is dividing the coning
manoeuvre into m smaller manoeuvres, as seen in the figure.
604  CHAPTER 10 Satellite attitude dynamics

over again.) From Equation 10.95, the time required for  n  small-angle coning maneuvers through a total 
angle of   θ   is 

  
t n

A
C nn ! π
ω

θ

0 2
cos   (10.98)      

 The   ratio of this to the time  t  1  required for a single coning maneuver is 

  

t

t
n nn

1

2

2

!
cos

cos

θ

θ   (10.99)      

 The   time is directly proportional to the number of intermediate coning maneuvers, as illustrated in 
 Figure 10.13   .  

10 50 70

0.8

0.9

30 90
0.7

1.0

HG0

2 HG0
tan 2

θ
θ

, degθ

 FIGURE 10.12  
       Ratio of delta-H for a sequence of small coning maneuvers to that for a single coning maneuver, as a function of the 
angle of swing of the spin axis.    

HG0

HG

HG

/2

HGf

∆
∆

θ

 FIGURE 10.11  
       A sequence of small coning maneuvers.    In each manoeuvre one needs to displace � by an angle ✓/2m
and wait 180 degrees.
The total manoeuvre is ��coning = 2m� tan ✓/2m (if m is
large this tends to ✓�, and thus this is worthy for large angles).

The total time of manoeuvre is t = m⇡I cos ✓/2m
� (if m is large

this goes to infinity, so there is a tradeo↵).
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Slowing the rotation: yo-yo device

A yo-yo device is a single-use device that can be used to
totally or partially stop the satellite’s spin. The mechanism
consists on two symmetrical masses fixed to the vehicle by a
joint that can be released. The masses are also attached to a
wire that is winded around the vehicle with a single point of
union, in a plane perpendicular to the rotation that has to be
stopped.
To slow down or stop the rotation, one releases the masses.
The start to get away from the vehicle and the wire starts to
unwind until the stress reaches the point at which the wire is
fixed to the vehicle. Then the wire is also released. If the
length of the wire is well designed, then the vehicle has
stopped.
Assumptions: Masses are considered points with mass m/2,
the wire is massless and not flexible, axisymmetrical vehicle of
radius R initially spinning around its symmetry axis with speed
n0. 10 / 14
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Yo-yo device

Initial kinetic energy is T0 =
1
2

�
I3n20 +mR2n20

�
. Initial angular

momentum is �0 = I3n0 +mR2n0. Defining K = 1 + I3
mR2 , we

can write T0 =
1
2mR2Kn20 and �0 = mR2Kn0.

At a given instant the situation is as in the figure:

 It   will be convenient to write this as 

  
H KmRG0

2
0! ω   (10.103)     

  where the nondimensional factor K is defined as   

  
K

C

mR
! "1

2   (10.104)     

   K R     is the initial radius of gyration of the system.   
 The   initial rotational kinetic energy of the system, before the masses are released, is 

  
T C mR KmR0 0

2 2
0

2 2
0

21
2

1
2

1
2

! " !ω ω ω   (10.105)      

 At   any state between the release of the weights and the release of the cords at the hinges, the velocity of 
the yo-yo mass must be found in order to compute the new angular momentum and kinetic energy. Observe 
that when the string has unwrapped an angle   φ  , the free length of string (between the point of tangency  T  
and the yo-yo mass  P ) is  R φ  . From the geometry shown in  Figure 10.16 , the position vector of the mass 
relative to the body frame is seen to be 

  

r i j i j

r r

! " " #( ) ( )R R R R

T G P T

cos sin sin cosφ φ φ φ φ φ! !
" #$$$ %$$$

! !
" #$$$$$ %$$$$

! !! "" #( ) ( )R R R Rcos sin sin cosφ φ φ φ φ φi j

  (10.106)      

 Since    r  is measured in the moving reference, the absolute velocity  v  of the yo-yo mass is found using 
Equation 1.56 

  
v

r
r! " $

d
dt





rel

ω   (10.107)     

10.8 Yo-yo despin mechanism  609

r

T

AG î

ĵ

x

y

m/2

RH

v

H ′

A′
m/2

P

cord

cord

R φ

φ

ω

φ

 FIGURE 10.16  
       Two identical string and mass systems wrapped symmetrically around the periphery of an axisymmetric spacecraft. For 
simplicity, only one is shown being deployed.    
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Yo-yo device

In the figure, the angle has already been unwound by an angle
�, and the vector ~r is the position vector of one of the masses
(since they are symmetrical it is enough to study one of
them). Given the assumptions, the wire should be tangent at
the point T . Use body axes ~i and ~j as in the figure.

In this frame, ~r is written as
~r = ~GT + ~TP = R(cos�~i + sen�~j) + R�(sen�~i � cos�~j).

To find the kinetic energy and the angular momentum we
need the inertial speed. One has:

~v = ~̇r |IN = ~̇r |ROT + ~! ⇥ ~r

where ~! = n~k .

Now, ~̇r |ROT = �̇R�(cos�~i + sen�~j) y
~! ⇥ ~r = nR(cos�~j � sen�~i) + nR�(sen�~j + cos�~i).
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Yo-yo device

Therefore
~v = R

⇣
(�̇+ n)� cos�� n sen�

⌘
~i +R

⇣
(�̇+ n)� sen�+ n cos�

⌘
~j .

Computing the norm of the speed:

v = R

r⇣
(�̇+ n)� cos�� n sen�

⌘2
+

⇣
(�̇+ n)� sen�+ n cos�

⌘2
.

Therefore: v = R
q

(�̇+ n)2�2 + n2.

Thus,T = 1
2

⇣
I3n2 +mR2((�̇+ n)2�2 + n2)

⌘
and using K ,

T = mR
2

2

⇣
Kn2 + (�̇+ n)2�2

⌘
.

On the other hand the angular momentum of the masses is
�m = |~r ⇥m~v |. Computing the product we get
�m = mR2(n + (n + �̇)�2).

Therefore
� = I3n +mR2(n + (n + �̇)�2) = mR2(Kn + (n + �̇)�2).
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Modifying the direction of the rotation axis: coning
Slowing the rotation: yo-yo device

Yo-yo device
By conservation of kinetic energy and angular momentum
T = T0, � = �0, thus reaching two equations

K (n20 � n2) = (�̇+ n)2�2, K (n0 � n) = (n + �̇)�2

Dividing the first equation by the second, we find
n0 + n = n+ �̇, thus �̇ = n0, this is, the unwinding rate of the
wire is equal to the initial angular velocity of the vehicle.
Substituting this value in the second equation and solving for
�, one can find the angle of unwound wire as a function of the
instantaneous angular velocity:

� =

r
K
n0 � n

n0 + n
If one wants that at the end n = 0, replacing this value, we
find � =

p
K , and since the length of wire is l = R�, we find

l = R
p
K , which does not depend on the initial speed!

One can find an adequate length of wire for any value
n 2 (�n0, n0). 14 / 14
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Active control systems

Passive control systems can allow for some perturbation
rejection and give stability enough for some applications.

However, particularly at the beginning of a mission, all
spacecraft need to perform:

Slew maneuvers
Adjustments of spin speed
Stationkeeping maneuvers

Thus, in many cases, one needs an active control systems
(active in the sense of requiring additional energy to work as
well as some kind of logic).

In missions requiring high accuracies, that active control
system will be the primary system. Then, one speaks about
three-axis stabilized attitude control.

In other cases, it may be a secondary system, which only
requires occasional use.
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Actuators
Before explaining the algorithms for attitude control, it is
important to quickly review the actuators that are used to
modify the attitude of a spacecraft (through some term in
Euler’s equations). The di↵erent types of actuators are:

Thrusters: based on expelling mass. Since mass is finite these
devices have limited use. Known as Reaction Control Systems.
Reaction wheels and inertia wheels, with changing angular
speeds, as seen in Lesson 5.
Control Moment Gyroscopes (CMG): they are as inertia wheels
(a disc-like device spinning at large speeds), which, instead of
modifying their angular speeds, tilt their axis of rotation
through motorized gimbals, thus quickly modifying their
angular momentum.
Magnetorquers, which use the magnetic field to produce a
torque.
Structural elements for passive control: booms, yo-yo devices,
nutation dampers... not covered here.

It is normal to have several kind of actuators in a spacecraft
for redundancy and given that they have di↵erent properties. 3 / 40
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Three-axis stabilized attitude control

Satellites with three-axis stabilized attitude control can have
any kind of pointing (inertial, orbital, some ground target...)
Objectives may be two: either to keep the satellite (in the
presence of perturbations) in a fixed attitude (a simple
regulation/stabilization problem) or to perform a slew
maneuver (which maybe to track a target or just modifying
the attitude).
There are two main families of actuators to achieve these
goals: reaction/inertia wheels /CMGs (also known as
momentum exchange systems) and RCS. Magnetorquers can
also partially perform this but it is a bit more di�cult due to a
direction without actuation: we will not consider them.
We will start with the first goal, since the second is more
di�cult, for both reaction/inertia wheels and RCS.
How to perform slew maneuvers will also be consider but only
for reaction/inertia wheels.
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Momentum exchange systems

For the highest degree of precision
in attitude, manoeuvrability and
stabilization, and for any
orientation independent of the
inertia tensor, one can use
momentum exchange systems
which use reaction wheels, inertia
wheels and/or CMGs, based on
conservation of angular
momentum.

Nevertheless these are expensive
system, with low tolerance to
failures, and require an auxiliary
system (thruster or magnetorquers)
to unload momentum and thus
avoid saturation.

Astronáutica y Vehículos Espaciales 48Dec-20-07

2. Sistemas de Control Activo

Dinámica y Control de la Actitud

2. Sistemas de Intercambio de Momento Angular

Otro ejemplo:
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Spacraft with three reaction wheels
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Fig. 6.10 Gyrostat in a circular orbit.

The rotational equation of motion is then simply given by

!̇H =
{

d !H
dt

}

B
+ !ωB/N × !H = !M (6.170)

where !M is the gravity-gradient torque acting on the vehicle. For the principal-axis
frame B, the equations of motion can be written as

J1ω̇1 − (J2 − J3)ω2ω3 + ḣ1 + ω2h3 − ω3(−H0 + h2) = M1 (6.171a)

J2ω̇2 − (J3 − J1)ω3ω1 + ḣ2 + ω3h1 − ω1h3 = M2 (6.171b)

J3ω̇3 − (J1 − J2)ω1ω2 + ḣ3 + ω1(−H0 + h2) − ω2h1 = M3 (6.171c)

where Mi = !M · !bi.
For small relative angles between B and A, we have

ω1 = θ̇1 − nθ3 (6.172a)

ω2 = θ̇2 − n (6.172b)

ω3 = θ̇3 + nθ1 (6.172c)

and

M1 = −3n2(J2 − J3)θ1 (6.173a)

M2 = 3n2(J3 − J1)θ2 (6.173b)

M3 = 0 (6.173c)

where n is the orbital rate and θ1, θ2, and θ3 are called the roll, pitch, and yaw
attitude angles of the spacecraft relative to the LVLH reference frame A.

Assume the situation in the figure, with three reaction wheels
in the three principal axes:

I1!̇1 + (I3 � I2)!2!3 + ḣ1 + !2h3 � !3h2 = M1

I2!̇2 + (I1 � I3)!1!3 + ḣ2 + !3h1 � !1h3 = M2

I3!̇3 + (I2 � I1)!2!1 + ḣ3 � !2h1 + !1h2 = M3

The angular momentum of wheels is denoted as hi = !Ri IRi .
These are control variables!
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Fig. 6.10 Gyrostat in a circular orbit.

The rotational equation of motion is then simply given by

!̇H =
{

d !H
dt

}

B
+ !ωB/N × !H = !M (6.170)

where !M is the gravity-gradient torque acting on the vehicle. For the principal-axis
frame B, the equations of motion can be written as

J1ω̇1 − (J2 − J3)ω2ω3 + ḣ1 + ω2h3 − ω3(−H0 + h2) = M1 (6.171a)

J2ω̇2 − (J3 − J1)ω3ω1 + ḣ2 + ω3h1 − ω1h3 = M2 (6.171b)

J3ω̇3 − (J1 − J2)ω1ω2 + ḣ3 + ω1(−H0 + h2) − ω2h1 = M3 (6.171c)

where Mi = !M · !bi.
For small relative angles between B and A, we have

ω1 = θ̇1 − nθ3 (6.172a)

ω2 = θ̇2 − n (6.172b)

ω3 = θ̇3 + nθ1 (6.172c)

and

M1 = −3n2(J2 − J3)θ1 (6.173a)

M2 = 3n2(J3 − J1)θ2 (6.173b)

M3 = 0 (6.173c)

where n is the orbital rate and θ1, θ2, and θ3 are called the roll, pitch, and yaw
attitude angles of the spacecraft relative to the LVLH reference frame A.

Remember also from Lesson 5 that once we know the speed
we need for the wheels, it can be achieved by using the
wheels’ internal electrical motors.
The model from Lesson 5 was:

IR1!̇1 + ḣ1 = J1

IR2!̇2 + ḣ2 = J3

IR3!̇3 + ḣ3 = J3

where Ji is the torque of the electrical motors. This is in the
end what we can really actuate directly. 7 / 40
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Spacecraft with three reaction wheels

Let us now use a nomenclature in which we denote the e↵ect
of the wheels with the letter u by following the classical
control nomenclature:

I1!̇1 + (I3 � I2)!2!3 = u1 + M1

I2!̇2 + (I1 � I3)!1!3 = u2 + M2

I3!̇3 + (I2 � I1)!2!1 = u3 + M3

where

u1 = �ḣ1 � !2h3 + !3h2

u2 = �ḣ2 � !3h1 + !1h3

u3 = �ḣ3 � !1h2 + !2h1

This is, ~u = �~̇h + ~h⇥~!
In addition we have the kinematic di↵erential equation

q̇ =
1

2
q ? q~!
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Regulation: Stabilizing a given attitude

For regulation of a fixed attitude, the problem is stabilizing
the values q(t) = qref and !(t) = 0. In addition, we assume
that we initially start close to that value of the state.

Thus, we linearize Euler’s equations around !(t) = 0. Ignoring
perturbing torques (Question: what could we try to do to
mitigate perturbing torques?):

d

dt

2

4
�!1

�!2

�!3

3

5 =

2

4
0 0 0
0 0 0
0 0 0

3

5

2

4
�!1

�!2

�!3

3

5+

2

4
1/I1 0 0
0 1/I2 0
0 0 1/I3

3

5

2

4
u1
u2
u3

3

5

where ~u = �~̇h + ~h⇥�~!

Notice that if we find ~u solving the control problem, we could
find the corresponding values of ~h by solving the di↵erential
equation (however: physical limitations, such as saturations or
rate limits could pose a problem).
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Stabilization
On the other hand, the attitude quaternion should be close to
the reference attitude (if we start close to the attitude qref ).
By following Lesson 2, then we can write q = qref ? �q, where
qref is the desired attitude and �q the attitude quaternion:

�q(~a) =
1p

4 + k~ak2


2
~a

�

From Lesson 4 the relationship between ~a and the angular
velocity is ~̇a ⇡ �~! + ~a⇥ ~!ref , since ~!ref = ~0 ! ~̇a ⇡ �~!.
Thus:

d

dt

2

4
a1
a2
a3

3

5 =

2

4
1 0 0
0 1 0
0 0 1

3

5

2

4
�!1

�!2

�!3

3

5

Combining the equations for the error in angular velocity and
attitude we find a full description of the error of the system, in
the next slide.
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Stabilization
System description:

d

dt

2

666664

�!1
�!2
�!3
a1
a2
a3

3

777775
=

2

666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

3

777775

2

666664

�!1
�!2
�!3
a1
a2
a3

3

777775
+

2

666664

1/I1 0 0
0 1/I2 0
0 0 1/I3
0 0 0
0 0 0
0 0 0

3

777775

2

4
u1
u2
u3

3

5

Call ~x to the variables describing the state, this is a classical
way to write a linear system

~̇x = A~x + B~u

We can use “our favorite linear method” to find a (linear)
control law ~u = K~x , which then later one needs to transform
in required velocities for the wheels by solving the angular
speed that relates ~u with the angular momentum of the
wheels, and then later transform that into commands for the
wheels’ motors.
A possible method is LQR (linear quadratic regulator) with
“infinite horizon”. Another is pole placement. 11 / 40
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The LQR method
Given

~̇x = A~x + B~u

find a control law ~u(t) (with feedback: ~u = K~x) minimizing:

J =

Z 1

0
(~xT (t)Q~x(t) + ~uT (t)R~u(t))dt

Problem posed and solved first by Rudolph Kalman!
Assumptions: Q,R symmetrical and Q > 0 (definite
semidefinite positive, which is equivalent to all eigenvalues
positive) and R � 0 (semidefinite positive, which is equivalent
to all eigenvalues non-negative).
Additional assumption: The system is“controlable”. Meaning
that “is is possible to solve the problem” (it is easy to solve
control problems that cannot be solved. For instance
ẋ1 = u1, ẋ2 = x2.) Mathematically a problem is controllable if
C = [B AB A2B An�1B] is full row rank, where n is the
number of states. Is this verified in our case?
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The LQR method
The control law that solves the problem is

~u = K~x

where the gain K is found as follows
1 Find the matrix P that solve the so-called “algebraic Riccati

equation”:

Q + ATP + PA� PBR�1BTP = 0

for instance with the Matlab command “are” (which requires
the Control Systems Toolbox) P=are(A,B*inv(R)*B’,Q);

2 The gain is then K = �R�1BTP

The Riccati equation is solvable only if the system is
controllable.
Optimal control should guarantee a good behavior of the
system, but does not take into account the actuator’s
saturation or other nonlinear behavior. The choice of Q and R
greatly influences the quality of the controller (more
conservative or more aggresive).

13 / 40
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The LQR method

To implement a control law

~u = K~x

let us first remember the definition of ~x .

As ~!ref = ~0, the first three components are the real value of
angular speed.

The next three components are ~a, from which one extracts
the quaternion error. It is easy to see that

~a = 2
�~q

�q0

which comes from �q = q⇤ref ? q(t).

Once the control ~u is computed, one needs to solve
~̇h = �~u + ~h⇥�~! to find out how to solve the angular
momentum of the wheels.
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Slew maneuvers and tracking

We have studied in Lessons 2 and 4 how to compute a given
angular velocity to maneuver from a given attitude to another.

Remember that, given qi and qf and a certain time T it was
required to find qR = q⇤i ? qf , extract Euler’s axis ~e and angle

✓, and then ~! = ~e!(t), where ! needs to verify
R T
0 !(⌧)d⌧ .

In addition, we can impose additional conditions such as
starting and finishing at rest, for instance by imposing a shape
to !(t) of the form !(t) = At(t � T ) (Exercise: find A).
Other conditions could be imposed.

Once we find the required angular velocity, if we substitute it
in Euler’s equation we can find the control. This is sometimes
called “open loop control” or feedforward control, and does
not use feedback.

15 / 40
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Slew maneuvers and tracking
If we call the found angular velocity ~!ref (t), and the
quaternion generated by that angular speed the reference
quaternion qref (t), we can also find a “reference control”
(feedforward control) ~uref as:

uref 1 = I1!̇ref 1 + (I3 � I2)!ref 2!ref 3

uref 2 = I2!̇ref 2 + (I1 � I3)!ref 3!ref 1

uref 3 = I3!̇ref 3 + (I2 � I1)!ref 1!ref 2

As before from this ~uref we can find the required speed of the
wheels and from that speed of the wheels, the internal
electrical motors’ torque that would be needed to perform the
maneuver.

What would happen if we try just to apply this feedforward
control without any feedback mechanism?

The problem of following the reference profile ~!ref (t),qref (t)
is sometimes called the tracking problem.
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Tracking

One possible idea to solve tracking is as follows: linearize
around the reference profile. Compute an additional feedback
controller around the reference profile that is added to the
feedforward control (so we have feedforward+feedback) so we
close the loop and guarantee stability (at least with respect to
small errors and perturbations) so that the system is kept on
the desired reference profile.
Thus let �~! = ~!� ~!ref , �~u = ~u� ~uref , and use the quaternion
error as previously defined. The linearized equations are:

I1�!̇1 + (I3 � I2)(!ref 2�!3 + �!2!ref 3) = �u1 +M1

I2�!̇2 + (I1 � I3)(!ref 3�!1 + �!3!ref 1) = �u2 +M2

I3�!̇3 + (I2 � I1)(!ref 1�!2 + �!1!ref 2) = �u3 +M3

and for the attitude error:

~̇a ⇡ �~! � ~!⇥
ref ~a
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Tracking
System description ignoring perturbing torques:

d

dt

2

666664

�!1
�!2
�!3
a1
a2
a3

3

777775
=

2

666666664

0
I2�I3

I1
!ref 3

I2�I3
I1

!ref 2 0 0 0
I3�I1

I2
!ref 3 0

I3�I1
I2

!ref 1 0 0 0
I1�I2

I3
!ref 2

I1�I2
I3

!ref 1 0 0 0 0

1 0 0 0 !ref 3 �!ref 2
0 1 0 �!ref 3 0 !ref 1
0 0 1 !ref 2 �!ref 1 0

3

777777775

2

666664

�!1
�!2
�!3
a1
a2
a3

3

777775

+

2

666664

1/I1 0 0
0 1/I2 0
0 0 1/I3
0 0 0
0 0 0
0 0 0

3

777775

2

4
�u1
�u2
�u3

3

5

Classical description as before

~̇x = A(t)~x + B(t)�~u

Now A and B are time-varying: cannot use the LQR method
as before.
We need more advanced methods, such as LQR (linear
quadratic regulator) with “finite horizon”.
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Tracking with finite horizon LQR

Given
~̇x = A(t)~x + B(t)�~u

find �~u(t) with feedback (�~u(t) = K (t)~x) minimizing

J =

Z T

0
(~xT (t)Q(t)~x(t)+�~uT (t)R(t)�~u(t))dt+~xT (T )Qend~x(T )

Assumptions: Q,R ,Qend symmetric and Qend ,Q > 0,R � 0.

Since it is a finite horizon controller, the controllability
hypothesis is not required, but there could be problems if
there is a loss of controllability of the system.
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Tracking with finite horizon LQR
The control law that minimizes J is as follows:

�~u = K (t)~x

where the gain K (t) is found as follows:
1 Find P(t) that solved the so-called “Riccati di↵erential

equation”:

�Ṗ = ATP + PA� PBR�1BTP + Q, P(T ) = Qend

for instance using ode45 in Matlab.
2 The gain is then K (t) = �R�1BTP(t)

Riccati’s di↵erential equation is always solvable! However, it
cannot be solved in real time, because it needs to be solved
backwards in time (there is a final condition instead of an
initial condition). Thus one solves it in advance and stores the
values of K (t).
As before: Choices of Q and R (also Qend) determines the
quality of the controller (more conservative or more aggresive).
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Tracking with finite horizon LQR
To implement the control law

�~u = K (t)~x

one needs to remember the definition of ~x .
As ~!ref 6= ~0, the first three components are ~! � ~!ref .
The second three components correspond to ~a, that need to
be extracted from the quaternion error. Remember that

~a = 2
�~q

�q0

for which we need to compute �q = q⇤ref ? q(t).
The final control is ~u = ~uref + �~u.
Remember that once ~u is known, at each instant is required

to solve ~̇h = �~u + ~h⇥�~! to know how to modify the angular
momentum of the wheels and therefore their internal torque
Ji .
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Nonlinear control

“Nonlinear control” comprises a wide range of techniques that
do not require the use of linearization.

Consider the following problem. Starting from ~!(0) and q(0)
we want to reach the identity attitude at rest. It is enough for
us if the system “tends” to that state, this is, our goal is that
~!(t) ! ~0 y q0(t) ! 1, ~q(t) ! ~0 when t ! 1.

This is, we make “asymptotically stable” the equilibrium
~! = ~0, q0 = 1, ~q = ~0.

If this is true, for any initial condition, then one says that the
equilibrium is globally asymptotically stable.

Notice that the target attitude could be any, just by making a
rotation of the inertial frame as q0 = q⇤ref ? q.

We solve this problem with the so-called “Lyapunov function
technique”.
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Nonlinear control

Let us start by remembering than since we don’t linearize,
now our system is the original one, writing as before the
control terms in the equations.

First, the angular velocity equations:

!̇1 =
I2 � I3
I1

!2!3 +
u1
I1

!̇2 =
I3 � I1
I2

!3!1 +
u2
I2

!̇3 =
I1 � I2
I3

!1!2 +
u3
I3
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Nonlinear control: Lyapunov functions

Can we find u1, u2 and u3 such that the equilibirum ~! = ~0 is
globally asymptotically stable?

The technique of Lyapunov functions is as follows. Let V be a
regular function (continuous, di↵erentiable) that depends on
the state (in this case, the angular velocity and quaternions)
such that :

It is always positive for any value of the states, except when the
state is zero; and for zero, it is zero (this is, positive definite).
The time derivative of V is definite negative (this is, negative
for any value of the state except zero).

Then it follows that the origin (zero value of the state) is
asymptotically stable (this method can be understood by
looking at the level curves of V ).

If in addition the limit of V when the state goes to infinity
also tends to infinity, the result is global.
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Nonlinear control: Lyapunov functions

The technique of Lyapunov functions is as follows. Let V be a
regular function (continuous, di↵erentiable) that depends on
the state (in this case, the angular velocity and quaternions)
such that :

It is always positive for any value of the states, except when the
state is zero; and for zero, it is zero (this is, positive definite).
The time derivative of V is definite negative (this is, negative
for any value of the state except zero).

Then it follows that the origin (zero value of the state) is
asymptotically stable (this method can be understood by
looking at the level curves of V ).

If in addition the limit of V when the state goes to infinity
also tends to infinity, the result is global.
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Nonlinear control: Lyapunov functions

Let us see how this works out for our first case with only
angular velocity. Consider:

V = I1
!2
1

2k
+ I2

!2
2

2k
+ I3

!2
3

2k

We see that the first conditions is fulfilled if k is a positive
constant (we will define it later).

Taking derivative:

Vt = I1
!1!̇1

k
+ I2

!2!̇2

k
+ I3

!3!̇3

k

Substituting the derivatives:

Vt =
!1((I2 � I3)!2!3 + u1)

k
+

!2((I3 � I1)!3!1 + u2)

k
+

!3((I1 � I2)!1!2 + u3)

k
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Nonlinear control: finding the control

Simplifying

Vt =
!1u1
k

+
!2u2
k

+
!3u3
k

Let us choose now: u1 = �c1!1, u2 = �c2!2, u3 = �c3!3,
where ci is a positive constant. Replacing this in Vt :

Vt = �c1!2
1 + c2!2

2 + c3!2
3

k

Thus by the technique of Lyapunov, it is proven that ~! = 0 is
globally asymptotically stable. Note that the value of Ci and k
does not matter as long as they are positive, but the value of
Ci will influence the performance of the control law.
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Nonlinear control: including quaternions

Let us consider now the full system including the quaternions

!̇1 =
I2 � I3
I1

!2!3 +
u1
I1

!̇2 =
I3 � I1
I2

!3!1 +
u2
I2

!̇3 =
I1 � I2
I3

!1!2 +
u3
I3

q̇0 = �1

2
(q1!1 + q2!2 + q3!3)

q̇1 =
1

2
(q0!1 � q3!2 + q2!3)

q̇2 =
1

2
(q3!1 + q0!2 � q1!3)

q̇3 =
1

2
(�q2!1 + q1!2 + q0!3)
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Nonlinear control: La Salle’s Theorem

Can we find values of u1, u2 and u3 guaranteeing that the
equilibrium ~! = ~q = ~0, q0 = 1 is asymptotically stable?

Unfortunately Lyapunov is not enough!

We also need ”La Salle’s Theorem”:
Let V be a Lyapunov function such that its derivative is
semidefinite negative (this is negative or zero). Let us call E
the set of states verifying V̇ = 0.
Let M be the largest invariant set of the system contained in
E .

Then the state goes to M when time goes to infinity.

What is the invariant set of a system? Is a set such that if the
initial condition starts in the set, the state stays in the set for
all t.
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Nonlinear control: finding the control (again)

Use the Lyapunov function

V = I1
!2
1

2k
+ I2

!2
2

2k
+ I3

!2
3

2k
+ (q0 � 1)2 + q21 + q22 + q23

We see that the first condition of being a Lyapunov function
is verified ( q0 has been displaced so that q0 = 1 is at the
origin).
Taking a derivative:

Vt = I1
!1!̇1

k
+ I2

!2!̇2

k
+ I3

!3!̇3

k
+ 2(q0 � 1)q̇0 + 2q1q̇1 + 2q2q̇2 + 2q3q̇3

Substituting:

Vt =
!1((I2 � I3)!2!3 + u1)

k
+

!2((I3 � I1)!3!1 + u2)

k
+

!3((I1 � I2)!1!2 + u3)

k

�(q0 � 1) (q1!1 + q2!2 + q3!3) + q1 (q0!1 � q3!2 + q2!3)

+q2 (q3!1 + q0!2 � q1!3) + q3 (�q2!1 + q1!2 + q0!3)
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Nonlinear control: finding the control (again)

Simplifying

Vt =
!1u1
k

+
!2u2
k

+
!3u3
k

+ (q1!1 + q2!2 + q3!3)

Let us choose now: u1 = �(kq1 + c1!1), u2 = �(kq2 + c2!2),
u3 = �(kq3 + c3!3), where ci is a positive constant.
Substituting:

Vt = �!1(kq1 + c1!1)

k
� !2(kq2 + c2!2)

k
� !3(kq3 + c3!3)

k
+(q1!1 + q2!2 + q3!3)

= �c1!2
1 + c2!2

2 + c3!2
3

k

We cannot apply Lyapunov directly, we need La Salle!

First of all, the set E is just !1 = !2 = !3 = 0 for all t.
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Finding the invariant set M
Replace !1 = !2 = !3 = 0 in the syste for all t (in particular
this implies that the derivatives are zero):

0 = 0 + u1

0 = 0 + u2

0 = 0 + u3

q̇0 = 0

q̇1 = 0

q̇2 = 0

q̇3 = 0

Thus the invariant set verifies u1 = u2 = u3 = 0, and q
constant.

Since u1 = �(kq1 + c1!1), u2 = �(kq2 + c2!2),
u3 = �(kq3 + c3!3), we obtain q1 = q2 = q3 = 0.
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Final stability result. Winding phenomenon.
Finally, since the quaternion must be unity, we get q0 = ±1.
Since q0 = 1 is the origin of the Lyapunov function, it
becomes stable (in fact q0 = �1 becomes unstable; which is a
problem since it is the same point, this is called the winding
phenomenon).
If one uses negative k in the control law then it can be
similarly shown that q0 = �1 becomes stable and q0 = 1
unstable. This can be verified by switching the Lyapunov
function to

V = �I1
!2
1

2k
� I2

!2
2

2k
� I3

!2
3

2k
+ (q0 + 1)2 + q21 + q22 + q23

If one fixes k = k0 · sgn(q0) then one stabilizes the “closest”
equilibirum.
Very interestingly: in the control law there are no inertias in
the formulas, thus we don’t need knowledge of them. This is
an universal control law. However one needs to know the state
(~! and q) to be able to apply the control law. 33 / 40
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Reaction Control Systems (RCS)

Astronáutica y Vehículos Espaciales 43Dec-20-07

2. Sistemas de Control Activo

Dinámica y Control de la Actitud

1. Sistemas de Control de Reacción.

En sistemas que requieran elevada
maniobrabilida, la solución más empleada
es un sistema de control de reacción o RCS,
que emplea un conjunto de propulsores
distribuidos por el vehículo para modificar la
actitud.
Puesto que en cada maniobra se consume
combustible, se debe optimizar el uso de los
propulsores para evitar un agotamiento
prematuro y fallo de la misión; por tanto se
debe permitir un margen de error para
evitar un exceso de activaciones.

Astronáutica y Vehículos Espaciales 44Dec-20-07

2. Sistemas de Control Activo

Dinámica y Control de la Actitud

1. Sistemas de Control de Reacción.

La llamada “lógica de propulsión”
establece cuando se disparan los
propulsores y cuando se acepta un
pequeño error de actitud/velocidad.
Normalmente es una combinación de
“zonas muertas” (sin actuación) e
histéresis (para evitar el disparo
repetitivo de propulsores). Además los
propulsores son actuadores “todo o
nada”, con lo que siempre actúan en
saturación. Por tanto un RCS es
intrínsecamente no-lineal.

In situations that require high/fast
manoeuvrability one can use a
Reaction Control Systems or RCS,
using a set of thruster distributed
on the vehicle to quickly and
e�ciently modify attitude.

The so-called “propulsion logic”
establishes when thrusters are
fired and if a small tolerance of
attitude/angular velocity can be
accepted.

Normally it is a combination of
“dead zones” (no actuations) and
hysteresis (to avoid the repetitive
firing of thrusters exhausting all
fuel).

Thrusters usually are actuators
“all or nothing”, thus always
acting in saturation.

This means that RCS are
intrinsically nonlinear, but
discontinuous as well. 34 / 40
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Reaction Control Systems
For RCS, we can model the e↵ect of the thrusters as torques
in Euler’s Equation.
We are only going to consider the regulation problem
(stabilization of an attitude to which we are already close).
Linearizing and taking Euler angles in the sequence 1-2-3 with
small angles, and combining the linearized kinematic and
dynamics, the system to be controlled becomes:

I1✓̈1 ⇡ u1,

I2✓̈2 ⇡ u2,

I3✓̈3 ⇡ u3,

Next we design u1, u2 and u3 to stabilize the system; each axis
is independent of one another. Classical methods of control
(or Lyapunov) cannot be used for thrusters since they cannot
give a variable value (a control law such as u = Kx does not
work). This is the only options are u = 0, uMAX , uMIN , where
uMIN should be negative (we can assume to simplify
uMIN = �uMAX ). We will use more explicit/geometrical ideas.
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Control with thrusters

Consider a single axis, then ↵̈ = u (where u is redefined by
dividing by inertia), with initial conditions ↵̇0 and ↵0.
Integrating the di↵erential equation:

↵̇� ↵̇0 = tu, ↵� ↵0 � t↵̇0 =
t2

2
u

If one removes time from the system:

↵� ↵0 =
↵̇0(↵̇� ↵̇0)

u
+

(↵̇� ↵̇0)2

2u

This is the equation of a parabola in the phase plane (✓-✓̇),
whose shape will depend from initial conditions and the
choices of control (u = 0, uMAX ,�uMAX ). If u = 0 time
cannot be removed and the system’s behavior is reduced to
moving along the segment ↵� ↵0 = t↵̇0.
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Control with thrusters

Example of parabolas with zero initial condition (arrows
indicate how the system behaves):
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                                                                          α!

                                                u<0 u>0

α

 
 
The arrows indicate that each parabola is followed with a specified direction. If for instance motion 
starts from the origin with M>0, then 0>α!!  and α!  will increase. By increasing the input u the 
parabolas are more open. Taking the extreme approximation of infinite torque, parabolas would be 
replaced by vertical lines, so that the maneuver would be impulsive, with a change in α!  associated 
to a constant α. On the contrary, if u=0 we would have a phase portrait given by horizontal lines, 
with no change in α! . In general, phase plane maneuvers are designed in order to have both 0α!  and 

fα!  equal to zero, that is to say rest-to-rest maneuvers. In addition, since the origin of the phase 
plane is arbitrary, either α0 or αf is set to zero. 
 
We can now design a maneuver in the phase plane assuming impulsive torques. This is the case of 
maneuvers performed by using high thrust propulsive systems. 
 

 α!  
 
 1 M>0 start 
 
                                                     M>0 
 

                                                                      0 α 
 M<0 

       start 
        end                3             2 

 
 
Starting from point 0 to end in the origin, if we apply a positive torque we would reach point 1, but 
here α!  is positive and we would de part from the desired attitude. We must then start with a 
negative torque, to reach point 2, switch off the controller to keep α!  constant until point 3 is 
reached and then provide a positive torque to reach the target final attitude. Of course, should the 
initial attitude be negative all the maneuver has to be performed in the opposite way. Notice also 
that the vertical arcs of the phase plane are traced in almost zero time, since the torque is assumed 
infinite, and are equivalent to impulsive maneuvers. The total maneuver time depends then only on 
the horizontal arcs of the phase plane trace. In theory, we would like to have α!  as high as possible 
to minimize maneuver time, so that the horizontal arc would be drawn in a short time. The major 
issue in this case is thruster synchronization, since with high α!  even a small time error would mean 
to reverse the control (point 3 in the example) in a different point on the phase plane, so the target 
attitude would not be reached.  
 
We can now consider a more realistic case, with bounded maximum torque. 
 

To move we need to use the parabolas:
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 α!  
 
 M>0 with umax

 

            end M>0 with u<umax 

 
 
 
 α 
  
 
 start 

                          M<0 
 

 
We will consider only the parabolas corresponding to umax so that α!  is the maximum possible and 
time is minimum. The problem is to find the position in which the torque has to be switched in sign. 
If the maneuver is completed according to the control logic: 
 

( )α−= signuu max  
 

once on the axis α!  the sign of α changes so that the phase plane portrait would look like in the 
following figure: 
 

α!

           -α0 α0

α

 
 
There is evidently a limit cycle, the system would behave like an undamped second order oscillator. 
 
Change the control logic to: 

( )α+α−= !ksignuu max  
 

so that the switch in the sign of the control torque is along an inclined straight line. We would like k 
to be positive in order to have a negative inclination of the switching line: 
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Control with thrusters
First idea: u = �uMAX sign(↵). The result is a limit cycle:
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 α!  
 
 M>0 with umax

 

            end M>0 with u<umax 

 
 
 
 α 
  
 
 start 

                          M<0 
 

 
We will consider only the parabolas corresponding to umax so that α!  is the maximum possible and 
time is minimum. The problem is to find the position in which the torque has to be switched in sign. 
If the maneuver is completed according to the control logic: 
 

( )α−= signuu max  
 

once on the axis α!  the sign of α changes so that the phase plane portrait would look like in the 
following figure: 
 

α!

           -α0 α0

α

 
 
There is evidently a limit cycle, the system would behave like an undamped second order oscillator. 
 
Change the control logic to: 

( )α+α−= !ksignuu max  
 

so that the switch in the sign of the control torque is along an inclined straight line. We would like k 
to be positive in order to have a negative inclination of the switching line: 
 

To avoid oscillation: u = �uMAX sign(↵+ k↵̇), with k > 0.
The result:
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α!  
 
 

 
 
 α0 
 α 
 
 
 

 line α−=α
k
1

!  
 

 
Reaching the switching line, u changes its sign, so that the phase plane trace is switched to a 
parabola with reversed axis; as the number of torque switches increases, the trace gets closer and 
closer to the origin. k is then an index of the damping in the oscillations. However, rigorously, an 
infinite number of switchings are needed to reach exactly the origin in a general case. 
 
If we draw the two parabolas that pass through the origin, corresponding to positive and negative 
torque, since for 0α!  equal to zero we have: 
 

2

u2
1

α=α !  

we can consider the following switching curve: 
 

!
"
#

$
%
&

αα−α−= !!
u2

1
signuu max  

 
The phase plane portrait of the maneuver will then be: 
 

          α!  
 
 
 
                                               Switching line α0 α 

 
 
It can be shown that this is the minimum time maneuver. If the initial and final velocities are zero, 
the satellite accelerates at the maximum level for half the rotation, then decelerates at same level for 
the second half of the rotation. The sign of the control torque becomes a function of α and α! . 
 
Finally, if we want to consider a minimum fuel maneuver we should fix a maximum maneuver 
time. This can be seen as a minimum time maneuver with one intermediate coast arc (at constant 
α! ) if the allowed maneuver time is greater than the minimum maneuver time for the same rotation. 
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Control with thrusters
To arrive in a finite time: u = �uMAX sign(↵� 1

2uMAX
↵̇|↵̇|)

(exercise). The result:
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α!  
 
 

 
 
 α0 
 α 
 
 
 

 line α−=α
k
1

!  
 

 
Reaching the switching line, u changes its sign, so that the phase plane trace is switched to a 
parabola with reversed axis; as the number of torque switches increases, the trace gets closer and 
closer to the origin. k is then an index of the damping in the oscillations. However, rigorously, an 
infinite number of switchings are needed to reach exactly the origin in a general case. 
 
If we draw the two parabolas that pass through the origin, corresponding to positive and negative 
torque, since for 0α!  equal to zero we have: 
 

2

u2
1

α=α !  

we can consider the following switching curve: 
 

!
"
#

$
%
&

αα−α−= !!
u2

1
signuu max  

 
The phase plane portrait of the maneuver will then be: 
 

          α!  
 
 
 
                                               Switching line α0 α 

 
 
It can be shown that this is the minimum time maneuver. If the initial and final velocities are zero, 
the satellite accelerates at the maximum level for half the rotation, then decelerates at same level for 
the second half of the rotation. The sign of the control torque becomes a function of α and α! . 
 
Finally, if we want to consider a minimum fuel maneuver we should fix a maximum maneuver 
time. This can be seen as a minimum time maneuver with one intermediate coast arc (at constant 
α! ) if the allowed maneuver time is greater than the minimum maneuver time for the same rotation. 
 

If one fixes a minimum time and wants to minimize fuel
(exercise):
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                                                                                 α!

α0

     α

 
 
In this case, the switching from one parabola to the other occurs in a finite time. Notice that if tmax is 
equal to the minimum time we would reduce the coast arc to zero and find again the minimum time 
solution. Fixing tmax becomes equivalent to fixing maxα! . 
 
The process just show is valid only if the rotation is around one principal axis; in other cases, the 
complete set of Euler equations should be used as system dynamics (and optimization dynamic 
constraint) and a closed form solution can no longer be found. 
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Control with thrusters: additional considerations

The procedure just explained cannot be applied if one cannot
neglect nonlinearities (gyroscopic couplings make necessary
the use of all the axis simultaneously). Then one needs to use
the full theory of optimal control.

In practice it is enough that the solutions converge close
enough to the origin (to avoid switching on the thurster too
often). This requires the use of dead zones and hysteresis.
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Nonlinear control with constant thrust actuators 
 
Considering the dynamic behavior of a satellite projected in the phase plane, it is possible to set up 
a nonlinear controller decoupled for each axis. The control is based on a combination of the angle ϑ 
and its derivative dϑ. In particular, a nonlinear switch called “Schmitt trigger” activates the 
controller on the basis of the value of a variable ϑ+τdϑ. Assume, for example, that the value of 
ϑ+τdϑ is greater than a given limit uon. In this case the actuators would be switched on until the 
same variable ϑ+τdϑ falls below a second limit uoff. 
 

 

uon 

-uon 

uoff 

-uoff 

U 

ε 
2sI

1

⋅
 

1+τs 
ϑϑ !!" +=  

ϑ  cϑ  

+ 
- 

Schmitt trigger 

 
 
The values of uon, uoff can be determined considering the maximum allowable angular error ϑmax, 
the maximum admissible angular rate dϑmax and the time constant τ. With reference to the 
following figure, we must first of all consider the two parabolas passing from the points (±ϑmax,0), 
corresponding to the controlled dynamics with the maximum torque.  

 
 

ϑ!  

ϑ  

maxϑ!  

maxϑ!−  

maxϑ  

maxϑ−  

onu−=ε  

offu−=ε  onu=ε  

offu=ε  

lϑ  

 
 
Intersect the two parabolas with the horizontal lines at dϑmax, to identify ϑ1, the angle error at which 
the controller must be switched on in order to prevent the error from getting larger than ϑmax 

c

2
max

max1 2u
dϑ

ϑϑ −=  
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uc = M/I is still the control command. The switching curve to activate the controller must intercept 
the point (ϑ1, dϑmax) and have a slope equal to −1/τ. The value of τ can be tuned according to some 
performance requirements. The values of uon and uoff are then evaluated as: 
 

uon = τdϑ+ϑ1 
uoff = −τdϑ+ϑ1 

 
With symmetry considerations, the switching values for negative errors are determined. On the 
phase plane, in ideal conditions with no disturbance torque and sensor error, the satellite phase 
portrait must converge to a limit cycle bounded by the values −ϑmax/+ϑmax and −dϑmax/+dϑmax. 
The transient response for large initial errors will still converge to the same final limit cycle, 
provided the time constant τ is selected with the correct sign. The parameter τ has an influence on 
the way the phase portrait converges to the limit cycle. 
 

 
 
Considering the inevitable presence of sensor errors and delays in the activation of the actuators, the 
switching of the control will not be exactly on the desired switching lines. This means that the real 
limit cycle in the phase plane will be slightly different from the ideal one, as shown in the following 
example. 
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