

DISEÑO Y SISTEMAS

AERODINÁMICA

ESTRUCTURAS

ESTABILIDAD Y CONTROL

ACTUACIONES Y PROPULSIÓN

SECTOR DISEÑO

Daniel García Guirao

Gwendolyne Espínola Guzmán

José Luis Bocanegra Cerrada

Diseño y evolución Sistemas y centros de gravedad

Mejoras

Diseño. Evolución

Diseño final

A

ANTIS

2500

Superficies mojadas (m^2)			
Fuselaje	164,893		
Ala	343,08		
Estabilizadores	115,296		
Otros	66,014		
Total	686,283		

Diseño final: Fuselaje

Interiores

Cuadernas
Largueros
Depósitos
Raíles
Baño
Suelo

Tren de aterrizaje

H_f	1,4629 m
H _c	0,906 m
α_c	23,28°
B_n	9,5890 m
B_m	1,3160 m
В	10,905 m
$\frac{F_n}{W_{TO}}$	0,1372
F_n	87605 N
F_m	435060 N
Т	2,0345 m
ϕ_{ot}	31,0553°
$lpha_{tb}$	44,6880°
̈́θ	4,6467 °/s ²

d_m	1,242 m
d_n	0,7497 m
W _m	0,472 m
w _n	0,2187 m

Sistemas

Sistemas

Sistemas

Sistemas. Centro de gravedad

Sistema	C.d.g total medido desde el morro (m)	Peso total (Kg)
Sistema eléctrico	14,81174352	484,522
Instrumentación	2,4	306,247
APU	24	198,199
Sistema de mandos de vuelo	8,858505254	861,591
Sistema hidráulico	12,07969394	330,332
API	14,4914975	638,929
Oxígeno	12	57,3233
Furnishing	7	1086,21
Baggage Cargo	15	890,114
Total	11,0125	5201,3963

Futuras mejoras

- Aprovechamiento del espacio sobrante
- APU con células de combustible

DISEÑO Y SISTEMAS

AERODINÁMICA

ESTRUCTURAS

ESTABILIDAD Y CONTROL

ACTUACIONES Y PROPULSIÓN

SECTOR AERODINÁMICA

Antonio Checa Cañadas

Sara Jiménez Alfaro

Juan Antonio Cabrera González

Aspectos geométricos Estudios Aerodinámicos Otros aspectos

AERODINÁMICA. Aspectos geométricos Dimensionamiento del ala

- Ala tipo hexagonal, puesto que es la más eficiente para velocidades de misión bajas.
- <u>Ala alta</u>, siendo las ventajas de esta configuración las más adecuadas para las necesidades de la aeronave.

AERODINÁMICA. Aspectos geométricos Dimensionamiento del ala

- Ala tipo hexagonal, puesto que es la más eficiente para velocidades de misión bajas.
- <u>Ala alta</u>, siendo las ventajas de esta configuración las más adecuadas para las necesidades de la aeronave.

	Superficie	Alargamiento	Envergadura	
	153 m ²	10,98	41 m	
ogracia	noc			Eficiencia

Regresiones

AERODINÁMICA. Aspectos geométricos Elección de perfiles

AERODINÁMICA. Aspectos geométricos Winglets

- Misión principal es la reducir la resistencia inducida, lo cual mejora la eficiencia aerodinámica.
- Reduce el consumo de combustible.
- Reduce las emisiones de gases.
- Reduce el ruido que produce.

Blended winglets

KC-135

AERODINÁMICA. Estudios aerodinámicos General

 Se ha analizado el ala con winglets en el programa XFLR5.

- Se ha analizado el ala con winglets en el programa XFLR5.
- Tener en cuenta no meter dos veces el efecto del winglets.

Datos en crucero.

AERODINÁMICA. Estudios aerodinámicos Estabilizador horizontal

Estabilizadores

$C_{L_{\alpha}}$	C_{L_0}	$C_{L_{\max}}$	α_{stall}	C_{m0}	X _{ca}
3,5356	0	1,8	25	0	3.87

Se ha analizado el estabilizador horizontal en el programa XFLR5.

Se ha seleccionado como "ala".

Perfiles

AERODINÁMICA. Estudios aerodinámicos Estabilizador vertical

Estabilizadores

$C_{L_{\alpha}}$	C_{L_0}	$C_{L_{\max}}$	$lpha_{stall}$	<i>C</i> _{m0}
3.5	0	0,654	25	0

-40 -20 0 20 40 60 B

Perfiles

Se ha analizado el estabilizador vertical junto con el horizontal en el programa XFLR5.

AERODINÁMICA. Estudios aerodinámicos Estabilizador vertical

AERODINÁMICA. Estudios aerodinámicos Polar del avión-Component Build and Method

Para ser más conservadores a la hora del cálculo de los parámetros se ha considerado que a pesar de que algunos elementos tendrían materiales compuestos el régimen del fluido que se tiene es totalmente turbulento.

ELEMENTO	DESPEGUE	CRUCERO	ATERRIZAJE
ALA+HTP+VTP	0.0079	0.0077	0.0079
UPSWEEP	0.0013	0.0013	0.0013
LEAKAGES & PROTUBERANCES	0.002874	0.00114	0.00364
PODS	0.0029	0.0027	0.0029
GONDOLA	0.000899	0.000833	0.000899
TREN	0.0177	0	0.0177
FLAPS	0.0044	0	0.0133
FUSELAJE	0.0026	0.0026	0.0026
CD ₀	0.040573	0.016273	0.0501

AERODINÁMICA. Estudios aerodinámicos Polar del avión compensada

- Se han analizado en el programa XFLR5 y se ha obtenido la polar de todos los elementos que presentan perfiles HTP, VTP y ALA.
- Esto permite sacar la polar compensada de coeficientes constantes.

$$C_D = C_{D0} + K_1 C_L^2 - K_2 C_L$$

	C _{Dmin}	C _{LDmin}	C _{Do} (ALA+VTP+HT P)	<i>K</i> ₂	<i>K</i> ₁
DATOS SIN WINGLETS	0,009055	0,051797	0,009185	0,005	0,0486
DATOS CON WINGLETS	0,00773	0,06427	0,0079	0,0064	0,0495

El coeficiente de resistencia parásita cambia:

DESPEGUE	CRUCERO IDA	CRUCERO VUELTA	ATERRIZAJE
0,04065	0,01634	0,01837	0,05222
TLANTIS			

AERODINÁMICA. Estudios aerodinámicos Eficiencia aerodinámica

La eficiencia se determina con la ecuación:

$$E_{max} = \frac{1}{2\sqrt{C_{d0}*K}}$$

Para mejorarla se procede a hacer cambio en el alargamiento.

Se incluyen winglets para mejorar la eficiencia:

PRIMERA	SEGUNDA	TERCERA	CUARTA
ITERACIÓN	ITERACIÓN	ITERACIÓN	ITERACIÓN
16,53	15,618	17,348	17,58

Los distintos valores de la eficiencia máxima en los tramos de la misión quedan recogidos a continuación

DESPEGUE	CRUCERO DE IDA	CRUCERO DE VUELTA	ATERRIZAJE
11,146	17,58	16,58	9,83
TLANTIS			
AERODINÁMICA. Otros aspectos

Estudio a diferentes altitudes y velocidades

- Se han realizado tres análisis para verificar que todos los parámetros se pueden asimilar como constantes dependiendo de la velocidad y de la altura:
 - PRIMER ANALISIS: Análisis a 103 m/s y a 4000m.
 - SEGUNDO ANALISIS: Análisis a 115 m/s y a 4000m.
 - ▶ TERCER ANALISIS: Análisis a 115 m/s y a 8000m.

	PRIMER ANÁLISIS	SEGUNDO ANÁLISIS	TERCER ANÁLISIS
$C_{L_{lpha}}$	5,22	5,27	5,26
C_{L_0}	0,428	0,4319	0,432
C_{D_0}	0,00588	0,0059	0,00596
$C_{L_{\max}}$ (ala)	1,6219	1,59	1,57
α_{stall}	21	21	21

AERODINÁMICA. Otros aspectos

Estudio a diferentes altitudes y velocidades

- Se han realizado tres análisis para verificar que todos los parámetros se pueden asimilar como constantes dependiendo de la velocidad y de la altura:
 - PRIMER ANALISIS: Análisis a 103 m/s y a 4000m.
 - SEGUNDO ANALISIS: Análisis a 115 m/s y a 4000m.
 - ▶ TERCER ANALISIS: Análisis a 115 m/s y a 8000m.

Conclusión: los datos aerodinámicos no varían excesivamente en un rango cercano

\sim			
DICENT	\frown	CICT	

AERODINÁMICA

ESTRUCTURAS

ESTABILIDAD Y CONTROL

ACTUACIONES Y PROPULSIÓN

SECTOR ESTRUCTURAS

Diego Gómez Jerez

Mario Espejo Arco

Peso de la aeronave y de sistemas Centros de gravedad Esfuerzos y cargas Materiales

Evolución de Pesos

Evolución de Pesos

Evolución de Pesos

Sistemas del avión (Kg)

- Flight Control System
- Hydraulic System
- Instrumentation
- Electrical System
- ECS
- Oxygen System
- APU
- Furnishing
- Baggage cargo
- Op. items

Comparación con aeronaves similares

Comparación con aeronaves similares

Fracción de peso estructural vs W₀

Centros de gravedad

Misión de diseño Misión de ferry $X_{cg_{PL}} = 11,5893 \text{ m}$ $Z_{cg_{PL}} = 1,6893 \text{ m}$ $X_{cg_{PL}} = 11,1286 \text{ m}$ $\boldsymbol{Z}_{\mathbf{c}\boldsymbol{g}_{\mathsf{PL}-Nf}}=1,\!4368\,m$ $X_{cg_{PL-Nf}} = 11,4322 \text{ m}$ $X_{cg_{PL-Nf}} = 11,7058 \text{ m}$ $X_{cg_{NPL}} = 11,2561 \text{ m}$ $\boldsymbol{Z_{cg_{NPL}}} = 1,2513 \ m$ $X_{cg_{NPL-Nf}} = 11,4317 \text{ m}$ $\boldsymbol{Z}_{\boldsymbol{\mathrm{c}}\boldsymbol{g}_{\mathrm{NPL}-Nf}}=0,9988\,m$ CG_{PL} CG_{NPL} $\overline{C}G_{PL-Nf}$ CG_{NPL-N} ġ, Misión de diseño

Envolvente del centro de gravedad

Envolvente del centro de gravedad

Aterrizaje nivelado (2 puntos)

<i>N_M</i> (KN)	254,710
V_{yM} (KN)	153
$M_{zM}(KN * m)$	305,5

Aterrizaje nivelado (3 puntos)

<i>N_N</i> (KN)	25,826	<i>N_M</i> (KN)	241,802
V_{yN} (KN)	3,3499	<i>V_{yM}</i> (KN)	12,049
$M_{zN}(KN * m)$	4,9112	$M_{zM}(KN * m)$	17,669

Aterrizaje taildown

<i>N_M</i> (KN)	252,23
V_{yM} (KN)	35,449
$M_{zM}(KN * m)$	51,986

Despegue nivelado (2 puntos)

• Se varía el empuje respecto al análisis del caso de aterrizaje nivelado

Despegue nivelado (3 puntos)

<i>N_N</i> (KN)	129,901	<i>N_M</i> (KN)	394,120
<i>V_{yN}</i> (KN)	2,1991	V_{yM} (KN)	12,624
$M_{zN}(KN * m)$	3,2987	$M_{zM}(KN*T)$	n) 18,936

Balance de Frenado (2 puntos)

Balance de Frenado (3 puntos)

<i>N_N</i> (KN)	39,309	N _M (KN)	255,510
V _{yN} (KN)	31,447	<i>V_{yM}</i> (KN)	204,410
$M_{zN}(KN * m)$	47,171	$M_{zM}(KN * m)$	306,610

Remolque

<i>N_N</i> (KN)	58,671		
V _{yN} (KN)	-10,119	N _M (KN)	199,970
$M_{zN}(KN * m)$	-15,179		

Cargas aerodinámicas

Para el correcto cálculo y representación de los esfuerzos y del ala, esta se divide en 10 partes, a partir de las cuales, como sumatorios, se obtienen: cortante, flector y torsor

Cargas aerodinámicas

TORSOR -50 -100 E -150 -200 -250 -300 2 12 18 20 0 4 6 8 10 14 16

m

Esf	Valor	
SH	784.89	KN
BM	7028.1	KN∙m
т	-283.98	KN∙m

AERODINÁMICA

ESTRUCTURAS

ESTABILIDAD Y CONTROL

ACTUACIONES Y PROPULSIÓN

SECTOR ESTABILIDAD

Alejandro Montero Miñán

Rocío Zabalo Liébanas

Luis Manuel García-Baquero Corredera

Estabilizadores y superficies de control Centros de gravedad Estabilidad estática y dinámica

Estudio preliminar

Estabilidad longitudinal: HTP

Evolución del diseño

Parámetro	Primer diseño	Diseño final
Superficie (m ²)	40	35
Envergadura (m)	13	12
Estrechamiento (-)	0.4	0.4
Flecha en el borde de	40	46
ataque (º)		

Diseño inicial con coeficientes de cola y diseño final muy similares.

Estabilidad longitudinal: HTP

Diseño final

Relación c_e/c_HTP y S_e/S_HTP similar a aeronaves actuales

Estudio posiciones C.G.

- C.G. más atrasado tal que ME = 10% ----- 11.703 m
- Posición más adelantada: según sea despegue o aterrizaje

Más desfavorable: despegue en ferry (15°) y aterrizaje en primera línea (20°)

Misión	C.G. más adelantado (m)	Л	-RESU CI alpi
Despegue ferry	11,234		
Aterrizaje primera línea	11,409		C

Posiciones finales C.G.

Diseño y Sistemas y Estructuras ajustan los centros de gravedad a los requisitos de Estabilidad y Control

Configuración	Posición C.G. (m desde morro)
(1) Con payload y fuel	11,58
(2) Con payload y sin fuel	11,706
(3) Sin payload y con fuel	11,256
(4) Sin payload y sin fuel	11,43

(3) Despegue en ferry > 11.234 m (diapositiva anterior)
(4) Aterrizaje primera línea > 11.409 m (diapositiva anterior)

El resto de configuraciones tienen un mayor margen y se cumplen
Posiciones finales C.G.

Para las posiciones anteriores, los márgenes estáticos son:

Trimado longitudinal de cruceros

Interesa C_{L0} cercano a la zona de descarga

Incidencias

- Ala: 1°
- HTP: 0°

Trimado longitudinal de cruceros - Ángulo de ataque

Cercano a cero o < 0: Redimensionado de ala, cambio de condiciones de vuelo o ambas

Deflexión del timón de profundidad

Rango de deflexión muy pequeño: Redimensionado o cambio de geometría para aumentar este rango y facilitar el control.

- Resistencia asociada al trimado despreciable con respecto a la parásita proporcionada por Aerodinámica: CD0=0.01628
- Coeficientes de momentos cumplen los requisitos de estabilidad estática: ($C_{m\alpha} < 0 \text{ y} C_{m0} > 0$).

Estabilidad direccional: VTP

$S(m^2)$	b(m)	$C_r(m)$	$C_t(m)$	AR	$\varphi(rad)$	Е	$X_{ca}(m)$	$Z_{ca}(m)$
21,4	5	4,39	4,17	1,1682	5,0177	0,95	23,766	4,523

XX

 U_{∞}

 δ_{VT}

d

Fallo de motor

T = 2803,83 kW $S_{rud}/S_{VTP} = 0,3$ d = 9,5 m

 $\delta_r = 20^{\circ}$

	$Cn^{disp}_{\delta r}$	$Cn^{req}_{\delta r}$
Despegue	-0,06924	-0,038152
Crucero de ida	-0,068684	-0,037436
Crucero de vuelta	-0,070337	-0,05839

Estabilidad lateral: alerones

Clase	Avión	Roll performance	
Ι	Pequeño o ligero	60° en 1,3 s	
п	Peso medio, maniobrabilidad media o baja (de carga o tanquero)	45° en 1,4 s	
III	Grande, pesado (de carga pesada, bombardero)	30° en 1,5 s	

c_{α}/c_{w}	t/c	$y_0(m)$	$y_{1}(m)$	$\delta^{max}_a({}^{\circ})$
0,4	0,18	12,2 (59,51%)	19,5 (95,12%)	30

 $|Cl_{\delta a}^{disp}| > |Cl_{\delta a}^{req}|$ en despegue, crucero de ida y vuelta, y aterrizaje

Verificación OEI en despegue

Normativa para controlar un fallo de motor en despegue (crítico)

Despegue: 5000 ft, 0° resbalamiento, deflexión rudder a 20° (máximo)

OEI Despegue			
Vs (m/s) 54.02			
1.1 Vs (m/s)	61.04		
Vmc (m/s)	55.91		
Phi (°)	-4.7		

Verificación OEI / Side slip en los cruceros

Crucero ida:

OEI (Beta=15°)			
da (°)	1.35		
dr (°)	13.546		
Phi (°)	0.758		

Resbalamiento (Beta=15º)		
da (°) 1.619		
dr (°)	11.297	
Phi (°) 2.5139		

Crucero vuelta:

OEI (Beta=15°)			
da (°) 1.303			
dr (º)	12.926		
Phi (°) 1.434			

Resbalamiento (Beta=15°)		
da (°)	1.461	
dr (°)	11.511	
Phi (°)	2.7104	

Se cumple en todo Phi < 5° y deflexiones < 20°

Estabilidad estática en cruceros

	Longitudinal			
	CL	CD	СМ	
a	6.3625	0.3548	-0.2516	
u	0.0703	0.0039	0	
q	4.3276	0	-22.934	
aDot	2.2476	0	-3.5169	
de	0.2543	0.0142	-0.9580	
dc	0	0	0	

	CL	CD	CM
a	6.3625	0.3507	-0.6145
u	0.1366	0.0075	0
q	5.0561	0	-23.428
aDot	2.2569	0	-3.5350
de	0.2543	0.0140	-0.9726
dc	0	0	0

Lateral - directional				
	Су	Cl	Cn	
beta	-0.3458	-0.0623	0.0861	
р	-0.0629	-0.5795	-0.0557	
r	0.1944	0.0969	-0.0715	
betaDot	0	0	0	
dr	0.3258	0.0359	-0.0963	
da	0	0.3380	-0.0454	
	Су	Cl	Cn	
beta	-0.3537	-0.0624	0.0905	
р	-0.0556	-0.6205	-0.0489	
r	0.2026	0.0943	-0.0740	
betaDot	0	0	0	
dr	0.3337	0.0368	-0,1004	
da	0	0.3618	-0.0436	

Estabilidad dinámica en cruceros

		Modo	Autovalores	T (s)	Damping	T1/2 (s)
	Longitudina	Corto Periodo	-0.866∓0.433i	14.48	0.894	0.799
	l	Fugoide	-0.0246 <i>∓</i> 0.0740i	84.88	0.315	28.141
IDA	Latoral	Balanceo Holandés	-0.0868∓0.678i	9.26	0.127	7.98
	- Directional	Espiral	-0.00705	-	-	98.30
	Direccional	Convergencia balance	-0.733	-	-	0.944
VUELTA	Longitudina	Corto Periodo	-0.728∓0.910i	6.90	0.625	0.952
	l	Fugoide	-0.0300∓0.0788i	79.69	- 0.625 0.356	23.071
	Lateral - Direccional	Balanceo Holandés	-0.0517∓0.715i	8.78	0.0721	13.391
		Espiral	-0.00472	-	-	146.92
		Convergencia balance	-0.702	-	-	0.987
_						

Parte real de autovalores < 0 🗸

Futuras mejoras

- Falta de tiempo: estabilizadores y trimado no es el óptimo.
- Mejora de diseño de timón de profundidad y dirección (reducir tamaño, resistencia y consumo).
- Reducción ala, reducción velocidad o aumento de altura.
- Reducción HTP para mayores deflexiones del elevador.

DISEÑO Y SISTEMAS

AERODINÁMICA

ESTRUCTURAS

ESTABILIDAD Y CONTROL

PROPULSIÓN Y ACTUACIONES

SECTOR PROPULSIÓN Y ACTUACIONES

Pablo Comesaña Sánchez

Adrián García López

Antonio González Carvajal

Estimaciones iniciales

Estimación de carga alar Estudio de requisitos de potencia. Velocidades

- Carga alar inicial $\simeq 4000 \text{ N/m}^2$
- Ratio Potencia-Peso $\simeq 0,25$ (D. Raymer)

Segmentos de vuelo

0.8

Motor provisional:

Allison T56-A-427 5250 shp ; 0.47 sfc

Opciones estudiadas

PW 150 x4 5071 shp ; 0.433 sfc

NK-12 M x2 14 795 shp ; 0.36 sfc

T406-AD x4 6150 shp ; 0.426 sfc TLANTIS

AE2100-D3 x4

4700 shp ; 0.41 sfc

TP400-D6 x2 11 000 shp ; 0.39 sfc

AE 2100-D3 4700 shp ; 0,41 sfc 873 kg 3,15 m x 0,73 m

Cambios en el peso y resistencias

Bajada de consumo

Motor ligeramente sobredimensionado: Palancas demasiado bajas

Escalado al 0.8

3760 shp ; 0,41 sfc

698,4 kg

2,924 m x 0,677 m

Estudio de velocidades en crucero

"Advanced Ultrafan"

Reducción consumo 30%

Contaminación acústica ↓ 65%

Misión de Primera Línea Perfil de Misión

Misión de Primera Línea

	Despegue	Subida 1	Crucero ida	Descenso 1
δ _T (%)	100.00	95.00	0.5	5.00
W_{f} (kg)	11.77	202.20	986.86	58.37
t (s)	15.79	249.3	2530.4	679.55

	Subida 2	Crucero vuelta	Descenso 2	Aterrizaje
δ _T (%)	95.00	0.7	5.00	N/A
W_f (kg)	243.43	267.5	75.68	2.714
t (s)	380.17	777.48	1186.17	15.7691

	W_f (kg)	t (h)	CASM (cts de \$)
TOTALES	1884.97	1.62	12.8

Misión de Ferry

1000

0

Taxi

	Despegue	Subida 1	Subida 2	Crucero	Descenso	Aterrizaje
δ _T (%)	100.00	81.14	91.51	40.38	0.05	≈0
W_f (kg)	5.13	301.25	153.04	6060.64	5.26	1.13
t (s)	5.89	455.64	400.37	45609.59	2009.98	21.96
P (hp)	3760	2655	1633	578.85	≈0	≈0
Fue tra	l por mo	7000 6000 5000 4000 3000 2000				Fuel consumido

Despegue Subida

Subida

Crucero Descenso Aterrizaje

Taxi

Misión de Ferry

	Despegue	Subida 1	Subida 2	Crucero	Descenso	Aterrizaje
δ _T (%)	100.00	81.14	91.51	40.38	0.05	≈0
W_f (kg)	5.13	301.25	153.04	6060.64	5.26	1.13
t (s)	5.89	455.64	400.37	45609.59	2009.98	21.96
P (hp)	3760	2655	1633	578.85	≈0	≈0

Tiempo por tramo

'IS

Misión de Ferry

	Despegue	Subida 1	Subida 2	Crucero	Descenso	Aterrizaje
δ _T (%)	100.00	81.14	91.51	40.38	0.05	≈0
W_f (kg)	5.13	301.25	153.04	6060.64	5.26	1.13
t (s)	5.89	455.64	400.37	45609.59	2009.98	21.96
P (hp)	3760	2655	1633	578.85	≈0	≈0

Evolución:

18 228 kg \rightarrow 11 350 kg \rightarrow 7031 kg \rightarrow 6552 kg 3048 m \rightarrow 6000 m \rightarrow 11 000 m \rightarrow 9000 m

W ₀	W _f total	V crucero media	Tiempo total	Distancia de Despegue	Distancia de Aterrizaje
27 114 kg	6 552 kg	96.04 m/s	13.45 horas	232.46 m	632.68 m

DIAGRAMA CARGA DE PAGO-ALCANCE

Alcances teóricos Situación de cada misión en el diagrama Modificaciones

DIAGRAMA CARGA DE PAGO-ALCANCI

Alcances teóricos Situación de cada misión en el diagrama **Modificaciones**

