

El problema

Fuente: Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service

El problema

National Climate Assessment: Vulnerable Forests

Projected climate changes suggest that western U.S. forests will be increasingly affected by larger and more intense fires throughout the 21st century, according to the National Climate Assessment.

www.nasa.gov/earthrightnow

Request For Proposal (RFP)

Concepto	Valor	Concepto	Valor
Tripulación	2 pasajeros (450 lb)	V _{stall}	90 kts
Carga de pago	45000 lb	V ^{máx} desc	150 kts
Radio de operación	200 nmi	H ^{máx} desc	300 ft
Alcance Ferry	2500 nmi	$V_{m \acute{a} x}$ (Vuelta Ferry) >	300 kts
TOFL (a 5000 ft)	5000 ft	Tiempo de recarga	10 min

ESAD Group

Group

Índice

- 1. Diseño y Sistemas
- 2. Estructuras
- 3. Aerodinámica
- 4. Estabilidad
- 5. Actuaciones
- 6. Conclusiones

1. Diseño y Sistemas

Diseño. Diseño Preliminar

 $S_{ref} = 178,74 \ m^2 \ W_0 = 68496 \ kg \ W_e = 37790 \ kg$

Diseño. Iteración II

 $S_{ref} = 164,48 \ m^2 \ W_0 = 63003 \ kg \ W_e = 32297 \ kg$

Diseño. Iteración III

ESAD

Group

 $S_{ref} = 136 m^2 W_0 = 52107 kg W_e = 24401 kg$

10

Diseño. Iteración IV

 $S_{ref} = 65,27 \ m^2 \ W_0 = 35500 \ kg \ W_e = 11341 \ kg$

Diseño. Diseño Final

 $S_{ref} = 62,24 m^2 W_0 = 32647 kg W_e = 10036 kg$

Diseño. Evolución del diseño

Diseño. Cabina

Altura máxima: 1'9 m

Diseño. Fuselaje y depósitos

Volumen de almacenamiento: 23'87 m³ Longitud total: 9'415m

Diseño. Fuselaje y depósitos

Diseño. Fuselaje y depósitos

Diseño: Fuselaje y depósitos

Diseño. Cono de cola y estabilizadores

•Upsweep: 8'1^o •Ángulo de guarda longitudinal: 17^o

•Puertas de tipo I.

•S. Mojada horizontal: 32m²

•S.Mojada vertical: 20'45m²

Diseño. Ala

•S. Mojada ala: 168,08 m² •Diedro: 3^{*o*}

Diseño. Ala y motores

•Clearances:

- Hélices contiguas:1,18 m
- Hélice-suelo:
- 0,75 m
- Hélice-fuselaje: 0'25 m

•S.mojada:~ 11 m²

Diseño. Tren de aterrizaje

Overturn: 28,69^o Sin Pods **ESAD** Group

Diseño. Tren de aterrizaje

Posición tren principal: 12,981 m Posición tren auxiliar: 1,781 m

Diseño. Tren de aterrizaje

Hc=20 cm AB=4,3 m

Diseño. Planos generales

Diseño. Planos generales

Ē

Diseño. Planos generales

Ē

Diseño. Estructura interna

•Nº largueros: 2 •Nº costillas: 36

Cuadernas: cada 0,5 mLarguerillos: cada 7,5°

Sistemas. Visión general

MOTW C295 = 23000 kg

Sistemas. Cabina

© AIRBUS MILITARY 2010 - A400M cockpit

Sistemas. Antenas

Sistemas. S. Hidráulico

Sistemas. S. Neumático

Sistemas. S. Eléctrico

2. Estructuras

Pesos

MTOW	S	W/S
32674 kg	62.23 m^2	530 kg/ m^2
•W estructura	6512 kg	
•W refuerzos	359 kg	
•W sistemas	3166 kg	
•W fuel	2020 kg	
•W payload	20412 kg	
•W crew	206 kg	

Evolución MTOW Pe-16

Desglose de pesos estructurales

Porcentaje pesos estructurales

Pesos estructurales

Pesos sistemas

Peso total de sistemas

Pesos sistemas

Materiales

Materiales compuestos

Materiales compuestos utilizados

Polyether ether ketone (PEEK)
Fibra de carbono
Fibra de vidrio
Kevlar

Polyether ether ketone (PEEK) Densidad 1320 k g/m^3 y modulo de Young 3.6 GPa Temperatura de cristalización 143°*C*

RESISTENCIA A ALTAS TEMPERATURAS EN LOS INCENDIOS 60°C+RADIACION

Materiales compuestos

Materiales compestos Pe-16

Cargas

		TREN PRINCIPAL			TREN DE MORRO			
		AXIL (N)	CORTANTE (N)	FLECTOR (Nm)	AXIL (N)	CORTANTE (N)	FLECTOR (Nm)	
	ATERRIZAJE 2 PUNTOS	639881	383928	222678,2	0	0	0	
ATERRIZAJE NIVELADO	ATERRIZAJE 3 PUNTOS	604287	362572	210291,7	35593	21356	12386,4	
TAIL DOWN LANDING		685253	295425	171346,5	0	0	0	
ATERRIZAJE EN 1 RUEDA		319940,6	191964,3	111339,32	0	0	0	
	ATERRIZAJE 2 PUNTOS	639881	1919,4	1113,2	0	0	0	
CARRERA DESPEGUE	ATERRIZAJE 3 PUNTOS	585399	17562	10185,9	54481	1634	947,7	
BALANCE FRENADO	SOLO TREN PRINCIPAL	159970,3	127976,2	74226,2	0	0	0	
	TREN MORRO Y PRINCIPAL	271331	217064,8	125897,5	48609	38887,2	22554,5	
REMOLQUE	TREN MORRO Y PRINCIPAL	292202	8766	5084,3	27737	832,1	482,6	

Posición CDG

Longitud fuselaje = 25m

Diagrama V-n

Cargas aerodinámicas

Cargas aerodinámicas

Esfuerzos en el encastre:

Cortante:	2,9161·10 ⁴ kg
Flector:	1,5506·10⁵ kg
Torsor:	-1,7204·10 ⁵ kg·m

Justificación de perfiles

Análisis de perfiles										
NACA	C _{dmin}	C _{m0}	α_{s}	α ₀	C _{IO}	C _{Iα}	C _{Imax}	(C _I /C _d) _{max}	Comparación	
0012	0,00502	0	22	0	0	6,5128	2,065	155,5	19,589895	
0015	0,00519	0	22,5	0	0	6,5564	2,065	154,5	19,5671175	
63(2)-615	0,00481	-0,1165	21,5	-4,4875	0,516	6,3687	1,87025	155,184	19,90331318	

Otros perfiles estudiados

23018, 2415, 2418 63(3)-218, 63(3)-618, 63(3)-418 64(2)-215, 64(2)-415, 64(3)-218, 64(3)-418 62(2)-215, 65(3)-618 66(2)-215, 66(2)-415, 66(3)-218, 66(3)-418

Análisis de perfiles

Superficies hipersustentadoras

Dispositivos hipersustentadores						
HLD	ΔC _{Lmax}	$\Delta \alpha_s$				
Flap fowler a 40º (0,4c)	2,3953	0,933				

Ala elíptica

Avión completo

Análisis aerodinámico

Análisis aerodinámico									
Elemento	C _{Lmax}	α _s	$C_{L\alpha}$	CLO					
Ala	1.993	18.5	5.0248	0.388					
НТР	1.47	19	4.3086	0					
VTP	2.135	17	6.8755	0					
Avión	2.21	18.5	5.7935	0.36					

Ţ

Aerodinámica

Polar parabólica

Polar parabólica (Misión de línea)								
Configuración	CD ₀	K ₁	K ₂					
Despegue	0.1060	0.0349	0.0044					
Subida 1	0.0160	0.0345	0.0039					
Crucero 1	0.0153	0.0347	0.0033					
Descenso 1	0.0157	0.0347	0.0038					
Viraje 1	0.0420	0.0343	0.0041					
Viraje 2	0.0243	0.0343	0.0041					
Viraje 3	0.0176	0.0343	0.0041					

Aerodinámica

Polar parabólica

Polar parabólica (Misión de línea) (cont.)								
Configuración	CD ₀	k ₁	k ₂					
Subida 2	0.0157	0.0345	0.0038					
Crucero 2	0.0151	0.0347	0.0033					
Descenso 2	0.0159	0.0347	0.0038					
Aterrizaje	0.1060	0.0349	0.0044					

Polar parabólica (Misión de Ferry)							
Configuración	CD ₀	k ₁	k ₂				
Crucero	0.0161	0.0348	0.0039				

Evolución del ala

Eficiencia aerodinámica

Group

Aerodinámica

Coeficiente de eficiencia de Oswald

Group

Superficie de control longitudinal

Variable	$\frac{C_a}{C}$	$y_0/(\frac{b}{2})$	$y_1/(\frac{b}{2})$	$\frac{S_E}{S_H}$
Magnitud	0,3	0,1	1	0,27

Trimado longitudinal estático, tramo de ida

 $\delta_e(^0)$

AO	A	⁰)

 CD_i

Mach	h (ft)	$\frac{W}{W_0}$	$\frac{X_{Cdg}}{L_{fus}}$	CL_{α}	CL_0	С М 0	CM _{δe}	$CL_{\delta e}$	CM _α
0,56	10000	0,988 - 0,9711	0,4388 - 0,4381	5,61	0,343	0,052	-3,05	0,731	-3,53

Trimado longitudinal estático, 1ª suelta de carga

Flaps 30^o

 $AOA(^{0})$

 $\delta_e(^0)$

Mach	h (ft)	$\frac{W}{W_0}$	$\frac{X_{Cdg}}{L_{fus}}$	CL_{α}	<i>CL</i> ₀	С М 0	CM _{δe}	$CL_{\delta e}$	CM _α
0,228 (77 <u>m</u>)	300	0,96 - 0,7588	0,438 - 0,448	5,9	0,932	0,306	-2,88	0,731	-3,32

Trimado longitudinal estático, 2ª suelta de carga

Flaps 15^o

 $AOA(^{0})$

Mach	h (ft)	$\frac{W}{W_0}$	$\frac{X_{Cdg}}{L_{fus}}$	CL_{lpha}	CL ₀	С М 0	CM _{δe}	$CL_{\delta e}$	CM _α
),228 77 <u>m</u>)	300	0,758 - 0,495	0,448 - 0,4566	5,8	0,746	0,274	-2,83	0,731	-2,88

Trimado longitudinal estático, 3ª suelta de carga

 $AOA(^{0})$

 $\delta_e(^0)$

SIN FLAPS

Mach	h (ft)	$\frac{W}{W_0}$	$\frac{X_{Cdg}}{L_{fus}}$	CL_{α}	<i>CL</i> ₀	С М 0	CM _{δe}	$CL_{\delta e}$	CM _α
0,228 (77 <u>m</u>)	300	0,495 - 0,231	0,4566 - 0,4828	5,61	0,343	0,099	-2,95	0,731	-2,73

Ferry

AOA(⁰)

 $\delta_e(^0)$

Mach	h (ft)	$\frac{W}{W_0}$	$\frac{X_{Cdg}}{L_{fus}}$	CL_{α}	CL ₀	С М 0	CM _{δe}	$CL_{\delta e}$	CM _α
0,3	25000	0,9786 - 0,748	0,48 - 0,4835	5,61	0,343	0,162	-2,82	0,731	-1,67

Cálculo posición más adelantada X_{cg}

•
$$X_{cg} \rightarrow \delta_e = 20^{\circ}$$

• Avión estable $\rightarrow Cm_0 > 0$
• $\frac{X_{Cdg}}{L_{fus}}\Big|_{min} = 0,387$

$$\frac{X_{Cdg}}{L_{fus}}\bigg|_{min} < \frac{X_{Cdg}}{L_{fus}}\bigg|_{\min real} = 0,4388$$

Estabilidad estática lateral-direccional, alerones

Ratio de giro en viraje $\begin{cases} RFP \rightarrow 0,124 \ rad/s \\ Normativa \rightarrow 0,3 \ rad/s \end{cases}$

 $Cl_{\delta a} = 0,069 > Cl_{\delta a}$ requerido = 0,0645

Superficie de control lateral-direccional

 $Cn_{\delta r} = 0,3 > Cn_{\delta r}$ requerido = 0,1312 \rightarrow Pérdida de motor

Estabilidad estática lateral-direccional

Pérdida de motor $\begin{cases} Despegue \rightarrow Etapa más restrictiva \\ Crucero \end{cases}$

	Despegue	Crucero
β	2 ⁰	00
ф	-5,3784 ⁰	-1,763 ⁰
δ_r	17,5095 ⁰	0,63294 ⁰
δ _a	20,3013 ⁰	0,64297 ⁰

	Despegue	Crucero
β	15 ⁰	15 ⁰
ф	0,79748 ⁰	6,8 ⁰
δ_r	11,9957 ⁰	4,1492 ⁰
δ_{a}	8,0805 ⁰	12,1204 ⁰

 $\beta=11,5^{\circ}$ Normativa

Derivadas de estabilidad, tramo de línea, ida

	CL	CD	СМ
а	5.75	0.3461	-3.5095
u	0.1506	0.004	0
q	16.2987	0	-57.5883
aDot	6.9380	0	-13.5826

	δ _e
CL	0,7307
CD	0,0197
СМ	-3,8451

	Су	Cl	Cn
β	-0,3436	-0,0240	0,1249
р	-0,0203	-0,6175	-0,0230
r	0,3188	0,0130	-0,1943
βdot	-0,1090	0,0145	0,0639

	δ_r	δ _a
Су	0,3051	0
Cl	-0,0405	0,1283
Cn	-0,1789	0,0134

Dinámica longitudinal, tramo de línea, ida

Corto periodo

Tiempo medio (s)

			Frecuencia natural (rad/s)	5,1601
			Amortiguamiento	0,50372
	Parte real	Parte imaginaria	Periodo (s)	1,4095
S1	-2.5992	4,4577	Tiempo medio (s)	0,26662
S2	-2.5992	-4,4577	Fugoide	
S3	-0.027135	0,070779		0.075000
<u>۲</u>	-0.027125	-0 070779	Frecuencia natural (rad/s)	0,075802
34	-0.027133	-0,070775	Amortiguamiento	0,35797
			Periodo (s)	88,772

25,5389

Dinámica lateral-direccional, tramo de línea, ida

	Parte real	Parte imaginaria
S1	0	-
S2	-2,367	-
S3	0,0021021	-
S4	-0,24129	1,9866
S5	-0,24129	-1,9866

Balanceo Holandés

Frecuencia natural (rad/s)	2,0012
Amortiguamiento	0,12057
Periodo (s)	3,1628
Tiempo medio (s)	2,8721

5. Actuaciones y Propulsión

Actuaciones. Carga alar.

Optimizada por Equipo Aerodinámica.

Actuaciones. Despegue/Aterrizaje.

 $L_{PISTA} = 1524 m$

Despegue: $d_{TO}(Linea) = 866 m$ $d_{TO}(Ferry) = 156 m$ $d_{TO}(Linea, FM) = 1476 m$ Aterrizaje:

> $d_{LD}(Linea) = 662 m$ $d_{LD}(Ferry) = 439m$

 $3 motores \rightarrow 6000 shp$ $4 motores \xrightarrow{\rightarrow} 8000 shp$

Propulsión. Planta motora.

Pratt & Whitney Canada PW123B

Havilland Canada DASH 8 Bombardier Q Series (Sistema ANVS) +1000 unidades (desde 1982)

Propulsión. Planta motora.

Pratt & Whitney Canada PW123B (0.8)

 $P_{SL} = 2000 \, shp \, (x4)$ $C_{bhp} = 0.463 \frac{lb}{hp \cdot h}$

 $W_{ENG} = 360 \, kg$

Propulsión. Planta motora: Potencia

Pratt & Whitney Canada PW123B (0.8)

Propulsión. Planta propulsora.

C295→Hamilton Standard 568F-5

 $P_{SL} = 2645 \, shp$

Hélice: 6 palas

 $D_{pala} = 3.89 m$

Propulsión. Planta propulsora.

Adaptación y modernización

 $D_{8 palas} = 3.42 m$

Pistas no preparadas: Kevlar Hélice paso variable: $\eta_p \simeq 0.82$

 $d_{encastre} \Rightarrow -12\%$

Actuaciones. Consideraciones generales.

Subida: Gradiente: $\gamma \ge 3.2 \%$ h \le 10000 ft: $M_{min} = 1.2 \cdot M_s = 0.285$ $M_{max} = (250 \ knots) = 0.35$ $h \simeq 300 \ ft$, $V \simeq 150 \ knots$ Suelta de carga: $W_{PayLoad} = 20412 \ kg$ $A = 300 \ acres \Rightarrow r_{giro} = 621 \ m$

Actuaciones. Misión Línea.

Crucero Ida: $M = 0.56 (357 \ knots), h = 10 \ kft$

Crucero Vuelta:

M = 0.59 (376 knots), h = 10 kft

Total: $W_{fuel} \simeq 1998 \, kg$ $T_{misión} \simeq 1h \, 32 \, min$ $CAPM = \$ 8.88 \, cents$

Actuaciones. Misión Ferry.

Actuaciones. Aeropuerto alternativo.

Loiter: $h = 1500 ft, C_L = C_{Lopt}$

Vuelo Espera:
$$h = 1500 ft$$
, $\begin{cases} V = V_{min} \\ n = n_{max} \end{cases} \Rightarrow r_{min} = 235 m$

Total:
$$W_{fuel} \simeq 340 \ kg \Rightarrow 9.5\% \ W_{fuelFerry}$$

Actuaciones. Diagrama h - M.

Actuaciones. Diagrama h - M.

Actuaciones. Diagrama $W_{PL} - R$.

Actuaciones. Alcance operativo.

 $R_{MaxPL} = 732 nmi$

Ida y Vuelta

6. Conclusiones

Conclusiones

Concepto	Valor
W _e	10036 kg
W ₀	32647 kg
W _f (línea)	1998 kg
W _f (ferry)	3601 kg
$W_f(m$ á $x)$	18400 kg
САРМ	\$8,88 cents
V _{max} (vuelta Ferry)	408 knots

Concepto RFP	Valor
Radio de operación	200 nmi
Alcance Ferry	2500 nmi
TOFL (a 5000 ft)	5000 ft

