PHOENIX

Diseño y desarrollo del proyecto

GRUPO EAN

.....

ÍNDICE

3

- Presentación del grupo y el proyecto
- Introducción
- Diseño
- Aerodinámica
- Estructuras
- Estabilidad
- Actuaciones y Propulsión
- Avances Tecnológicos
- Sistemas

GRO

4

- Quiénes somos?
- A qué nos dedicamos?
- Proyectos actuales

GROU

PROYECTO PHOENIX

Objetivos a lograr

5

Características destacables

Objetivos a lograr

6

Características destacables

DISEÑO Y DESARROLLO: Evolución del modelo

DISEÑO Y DESARROLLO: Evolución del modelo

DISEÑO Y DESARROLLO: Geometría general

DISEÑO Y DESARROLLO: Diseño del fuselaje

DISEÑO Y DESARROLLO: Diseño del fuselaje

0000

DISEÑO Y DESARROLLO: Tren de aterrizaje

DISEÑO Y DESARROLLO: Modelos alternativos

DISEÑO Y DESARROLLO: Modelos alternativos

DISEÑO Y DESARROLLO: Estado actual

AERODINÁMICA: Elección del perfil

20

AERODINÁMICA: Elección del ala

Mejoras del ala

- Torsión
- Winglets

AERODINÁMICA: Elección del ala

AERODINÁMICA: Elección del ala

Ala inicial		
$S(m^2)$	139,22	
b(m)	35,39	
E	0,56	
Cm ₀	-0,047058	
$\alpha_{stall}(^{\circ})$	23	
CD_{min}	0,004529	
$(CL^{3/2}/CD)_{max}$	25,3427	
CL_{α}	0,088682	
CL_{max}	1,94	
$X_{ca}(m)$	1,3	

	Ala final		
	$S(m^2)$	104,7	
	b(<i>m</i>)	33	
	Cm ₀	-0,084895	1
	$\alpha_{stall}(^{\circ})$	22,5	
2	CD _{min}	0,004524	
	CL_{α}	0,09174	1
	CL_{max}	1,97	
-	$X_{ca}(m)$	0,85	

AERODINÁMICA: Elección del HTP y VTP

HTP	
$S(m^2)$	40
b(<i>m</i>)	14
Ε	0,6
Perfil	NACA 0012

VTP	
$S(m^2)$	19,245
b(<i>m</i>)	5,436
Ε	0,5
Perfil	NACA 0012

AERODINÁMICA: Polar del avión y eficiencia aerodinámea

23_

	Peso(kg)	%MTOW	FINAL
MTOW	37166,3	_	36012,18
Wemp	13812,6	37,2	12718,68
Componente			
Alas	3122,21	8,4	2972,72
HTP	877,5	2,36	813,08
VTP	437,27	1,17	405,14
Fuselaje	3014,01	8,12	2803,52
Tren	1213,09	3,26	1120,44
Motores	2232,84	6	2067,67
Westructura	10896,94	29,32	10182,56909

ESTRUCTURAS: Peso de los sistemas

Componente	Peso(kg)	%MTOW	FINAL
Fly control	394,62	1,06	204,15
Hidráulico	133,8	0,36	123,58
Instrumentación	569,47	1,53	526,08
Electricidad	431,3	1,16	398,59
API	819,27	2,2	758,65
Oxígeno	76,6	0,2	70,76
APU	40,88	0,12	37,76
Baggage	285,4	0,77	264,68
Opitem	164,32	0,44	151,87
Wsistemas	2915,66	7,84	2536,10

Depósitos 889

ESTRUCTURAS:

Refuerzos y materiales compuestos

Usando como valores de referencia los porcentajes existentes de composites en el A350.

ESTRUCTURAS: Comparación de pesos

Sec.

ESTRUCTURAS: Envolvente del centro de gravedad

Con carga y fuel máximo	12,25
Con carga sin fuel	12,21
Sin carga	12,04
En vacío	11,92

1.20

ESTRUCTURAS: Estimación de carga

Distribución de cortantes

Distribución de flectores

ESTRUCTURAS: Cargas en el encastre

Cortante (N)	Momento flector (Nm)	Momento torsor (Nm)
264647,99	1824315,93	-252426,23
		and the second se

Estabilidad y control

Margen estático

- Trimado longitudinal: Ángulo de ataque
- Trimado longitudinal: Deflexión elevador
- Diseño de las superficies de control
- Centro de gravedad
- Derivadas de estabilidad
- Estudio de estabilidad dinámica: Longitudinal
- Control automático longitudinal
- Estudio de estabilidad dinámica: Lateral

Margen Estático

Margen Estático				
PL	14,86%			
PL-NF	16,06%			
NPL	21,16%			
NPL-NF	24.76%			

Diseño superficies de control: Trimado Eroup

Lateral

Viento cruzado				
β	15°			
Φ	1,64°			
δ а	5,37°			
δr	15,31°			

One engine inoperative				
β	0°			
Φ	-2,81°			
δ a	-1,7°			
δr	6,59°			

Diseño superficies de control: Trimado En N

				– Latora
	Vie	ento c	cruzado	Latera
	β		15°	
	Φ		1,64°	
	δ а		Ale	rones
	δr	Enve	ergadura	3,6 metros
/		Cue	rda	1 metro

C	Dne engine	inopera	tive		
β		0°			
Φ		-2,81°			
δа		-1,7°			
_		Rud	lder		
δr	Envergad	ura	6,55 m	etros	
	Envergad reducida	ura	5,436 r	netros	
	Cuerda		0,885 r	netros	
	Cuerda		0,885 r	netros	
			Ł		

Derivadas de estabilidad

	CL	CD	СМ		Су	CI	Cn
α	7,1040	0,2834	-1,0560	β	-0,6272	-0,0873	0,1455
u	0,0906	0,0036	0	p	-0,0645	-0,5221	-0,0602
q	7,1884	0	-37,5720	r	0,3302	0,1105	-0,1044
α.	2,8322	0	-5,746	β	-0,0383	-0,0026	0,0111
	CL	CD	CM		Су	CI	Cn
de	1,2143	0,0484	-3,9964	dr	0,4504	0,03	-0,1309
dc	0	0	0	da	0	0,1722	-0,0289
					- Kard		A A

Estudio de estabilidad dinámica: Longitudinal

Autovalores modo	de corto periodo	Autovalores r	nodo fugoide
-1,3726+1,6193i -1,3726-1,6193i		-0,031+0,092i	-0,031-0,092i
Corto pe	eriodo	Fuge	oide
Frecuencia natural	2,1228 rad/s	Frecuencia natura	l 0,097 rad/s
Amortiguamiento	0,6466	Amortiguamiento	0,32
Periodo	3,88 s	Periodo	68 s
Tiempo mitad	0,5 s	Tiempo mitad	21,77 s

		7	
1	1	1	
		¥	
	22	9	

Velocidad

Ángulo de ataque

Control automático longitudinal

Ángulo de cabeceo

Ratio de cabeceo

Estudio de estabilidad dinámica: Lateral GROUP

Modo espiral		Converger	ncia en balance
Autovalores	-0,0071449	Autovalores	-2,8453
Tiempo mitad	96,99 s	Tiempo mitad	0,24356 s
	Balance	o holandés	
	Autovalores	-0,12568±1,63i	
	Frecuencia natura	l 1,6348 rad/s	
	Amortiguamiento	0,076874	
	Periodo	3,8547 s	2
	Tiempo mitad	5,5142 s	
			The second

Estudio de estabilidad dinámica: Lateral GRO

Respuesta a escalón en alerones

Respuesta a escalón en elevador

Modo espiral		Convergencia	en balance
Autovalores	-0,0069	Autovalores	-1
Tiempo mitad	100 s	Constante de tiempo	1 s

Balanceo holandés				
Autovalores	-4,5±3,9686i			
Frecuencia natural	6 rad/s			
Amortiguamiento	0,75			

Ganancia de realimentación						
(alerones	[0.0180	0.7744	-20.8965	1.6208]		
(rudder	[-0.0018	-5.7707	-5.3624	0.4759]	10.00	

Respuesta a escalón de Alerones

Respuesta a escalón del rudder

ACTUACIONES: Perfil de la misión principal

ACTUACIONES: Misión de extinción. Despegue y Aterrizaje

Despegue	Normal	Fallo de un motor	Aterrizaje	Normal	Emergencia (90% TOW)	Emergencia (100% TOW)
Tiempo total	26,8826 s	35,0791 s	Tiempo total	19,4694 s	22,5214 s	23,375 s
Distancia total	900,62 m	1152,56 m	Distancia total	560,96 m	918,72 m	998,71 m

Balanced field length: 1524 m

Balanced Field Length: 1524 m

CUMPLIMOS PODEMOS ATERRIZAR CON TOW

ACTUACIONES: Misión de extinción. Cruceros

	Crucero ida	Crucero regreso
Altitud	13000 ft	13000 ft
Velocidad	128,611 m/s	128,611 m/s
Mach	0,3725	0,3725

Velocidad máxima alcanzada (Crucero de regreso)

171,69 m/s (333,74 knots) > 300 knots

ACTUACIONES: Misión de extinción. Evolución resultados

Resultados	Presentación 2	Presentación 3	Presentación Final
Peso al despegue (MTOW)	41584,0216 kg	35223,1055 kg	35125,0404 kg
Fuel consumido total	2925,678 kg	1697,6439 kg	1683,4493 kg
Distancia recorrida total	741472,576 m	751712,9785 m	750701,5987 m
Tiempo empleado total	6862,6685 s (1,9 h)	7134,6306 s (1,98 h)	7088,5284 s (1,97 h)
CASM	11,6163 cent	10,3411 cent	10,2844 cent

ACTUACIONES: Impacto de los avances tecnológicos

Resultados	Resultado Original	Resultados Finales: Con nuevas tecnologías
Fuel consumido total	1683,4493 kg	1533,6223 kg (-8,9%)
Peso al despegue (TOW)	35125,0404 kg	34975,2134 kg (-0,426%)
CASM	10,2844 cent	10,1087 cent (-1,71%)

ACTUACIONES: Comparación por segmentos

Evolución por segmentos del fuel consumido

Evolución por segmentos de la distancia recorrida

ACTUACIONES: Misión de transporte Ferry

Resultados	Revisión 3	Final
Peso inicial	19620 kg	18266,5 kg
Fuel total consumido	6127 kg	5882,0834 (-3,9%)
Distancia recorrida total	4631569,24 m	4629927,8 m (2500 mni)
Tiempo total empleado	38718 s <mark>(10,75 h)</mark>	38625,76 (10,7 h)

ACTUACIONES: combustible y distancia

ACTUACIONES: Misión de emergencia

ACTUACIONES: Diagrama carga de pago-alcance

ACTUACIONES: Planta propulsiva

Propulsion		
Tipo de motor	Turbohelice	\sim
Numero de motores	4]
Potencia a nivel del mar	1800	shp
Consumo esp. a nivel del mar	0.568	lb/(shp* h)
Propulsion		
Normativa	Civil	~
Rendimiento de la helice	0.82	

70

Motor Elegido:

Avco Lycoming T53-L-703 (Turboeje + Hélices)

ACTUACIONES: Planta propulsiva

Especificaciones	
Peso	545 lb <mark>(247 kg)</mark>
Diámetro	23 in <mark>(0,6 m)</mark>
Longitud	47,6 in <mark>(1,2 m)</mark>
Hélices	6 x Hamilton standard 568F-5
Diámetro	3,89 m

ACTUACIONES: Planta propulsiva

Especificaciones	
Peso	545 lb <mark>(247 kg)</mark>
Diámetro	23 in (0,6 m)
Longitud	47,6 in <mark>(1,2 m)</mark>
Hélices	6 x Hamilton standard 568F-5
Diámetro	3,89 m

AVANCES TECNOLÓGICOS: Combustible alternativo

Reducción emisiones

AVANCES TECNOLÓGICOS: Cyclean Engine Wash

Reducción flujo de combustible 0,5%

AVANCES TECNOLÓGICOS: Fly-By-Wire

75

AVANCES TECNOLÓGICOS: Impresiones 3D

- Reducción peso ------ 4-7%
- Reducción emisiones
- Reducción de consumo de combustible 6,4%

AVANCES TECNOLÓGICOS: Fluidics

2-3%

Eliminación de timones de profundidad

Reducción peso

AVANCES TECNOLÓGICOS: AFC

0,5%

- Reducción cola → 17%
- Reducción peso —

78

- Reducción resistencia
- Aumento de eficiencia de combustible 1-2%

1%

AVANCES TECNOLÓGICOS: Pintura

Fuselaje Reducción consumo de combustible 1%
Reducción de resistencia ----> 20%

Motor

79

Mayor eficiencia aerodinámica Reducción de emisiones Disminución de consumo de combustible

AVANCES TECNOLÓGICOS: Plumas coberteras

AVANCES TECNOLÓGICOS: Scalmalloy

- Reducción peso
- Aumento durabilidad de componentes
- Protección contra fatiga por corrosión. Reducción de grietas ---- 20-50%

AVANCES TECNOLÓGICOS: Sistemas de misión y aviónica

- IMA: Integrated Modular Avionics _____ Centralización de la aviónica. Reducción de equipos
- Software integrado para cálculo de las trayectorias
- Cámara FLIR
- Casco para visualización del incendio

DISEÑO Y SISTEMAS: Sistema neumático

PROYECTO PHOENIX: FIN DE PRESENTACIÓN

Muchas gracias por su atención

