

METAL FEATHER WING ENGINEERING

Water Bomber Pelican - 16

- 1. DISEÑO
- 2. ESTRUCTURAS
- 3. AERODINÁMICA
- 4. ESTABILIDAD
- 5. ACTUACIONES

Departamento de Diseño

David Barrero Angulo Álvaro Díaz Campillejo

- 1. DATOS GEOMÉTRICOS
- 2. EVOLUCIÓN DEL DISEÑO
- 3. DISEÑO DEFINITIVO
- 4. DISTRIBUCIÓN INTERNA
- 5. PLANOS DEL WBP-16
- 6. SISTEMAS
- 7. NUEVAS TECNOLOGIAS

Datos geométricos

Longitud del fuselaje	18,5m
Diámetro del fuselaje	2,5m
Superficie alar	100m ²
Envergadura	30,71m
Alargamiento	9,43
Ángulo de upsweep	7,97°

Diseño definitivo

Diseño definitivo

Distribución interna

Distribución interna

Planos WBP-16

Planos WBP-16

Sistemas

Departamento de Estructuras

Javier Cristóbal Cámara Molina María del Carmen de los Ángeles Rodríguez

- **1.** ESTRUCTURA INTERNA
- 2. ESTUDIO DE LOS PESOS
- 3. LÓGICA DE MATERIALES
- 4. COMPARATIVA DE PESOS
- 5. ENVOLVENTE DEL CENTRO DE GRAVEDAD
- 6. DIAGRAMA V-N
- 7. CARGAS

Estructura interna: Ala

Estructura interna: Fuselaje

Estructura interna: HTP y VTP

Pesos Finales Primera Línea

Pesos MTOW 7% 24% 1% 9% 59% 0% Estructura Tripulación Refuerzos Carga de Pago Sistemas Combustible

Estructura	8205,4 <i>kg</i>
Refuerzos	314,47 <i>kg</i>
Sistemas	3091,22 <i>kg</i>
Tripulación	205,93 <i>kg</i>
Carga de Pago	20411,7 <i>kg</i>
Combustible 1ª Línea	2440,8 <i>kg</i>
Peso en Vacío	11611,1 <i>kg</i>
W ₀ 1ª Línea	34669,5 <i>kg</i>
Carga Alar	346,7 <i>kg/m</i> ²
Superficie Alar	100 m²

Pesos Finales Ferry

Pesos Ferry

Estructura	8205,4 <i>kg</i>
Refuerzos	314,47 <i>kg</i>
Sistemas	3091,22 <i>kg</i>
Tripulación	205,93 <i>kg</i>
Combustible Ferry	5170 <i>kg</i>

Peso en Vacío	11611,1 <i>kg</i>
W ₀ Ferry	16987 kg

Pesos Estructurales

Ala	2221,42 <i>kg</i>
HTP	692,686 <i>kg</i>
VTP	359,639 <i>kg</i>
Fuselaje	1642,37 <i>kg</i>
Tren de aterrizaje	1090,92 <i>kg</i>
Motores	2512,84 <i>kg</i>
Sistemas	3091,22 <i>kg</i>

Estructura + Refuerzos	8519,87 <i>kg</i>
------------------------	-------------------

Pesos de Sistemas

Opitem

Electricidad

API

3091,22 *kg*

Sistemas

FCS	540,357 <i>kg</i>
Sist. Hidráulico	225,355 <i>kg</i>
Instrumentación	440,679 <i>kg</i>
Electricidad	609,419 <i>kg</i>
API	692,794 <i>kg</i>
Oxígeno	54,273 <i>kg</i>
APU	173,35 <i>kg</i>
Sist. Carga de Pago	243,371 <i>kg</i>
Opitem	111,623 <i>kg</i>

27

Evolución del peso

	Revisión 1	Revisión 2	Revisión 3	Final
MTOW	54000 kg	36782,1 <i>kg</i>	35058,6 <i>kg</i>	34669,5 <i>kg</i>
W vacío	27200 <i>kg</i>	12800,7 <i>kg</i>	11800,9 <i>kg</i>	11611,1 <i>kg</i>
W fuel	5997 kg	3173,7 <i>kg</i>	2640,06 <i>kg</i>	2440,8 <i>kg</i>

Materiales

- Materiales compuestos:
 - Fibra de Carbono
 - Fibra de Vidrio
- Metálicos
 - Aluminio 6061-T6
 - Aluminio 7075-T6
 - Titanio Ti-6Al-4V
 - Acero AISI 4130

Comparación Pesos

Avión	Peso en Vacío (kg)	MTOW (kg)	% MTOW	
KC-10	109328	267600	40,855	
KC-135-Stratotanker	44663	140000	31,902	
KC-767	82377	186880	44,08	
НС-130 Н	34826	79379	43,873	
КС-130 J	34274	79378	43,178	
Lockheed Tristar (RAF)	105165	245000	42,924	
Ilyushin Il-78	72000	210000	34,286	
C-5	172370	348800	47,2	
WBP-16	11611,1	34669,5	33,49	

Comparación Pesos

	KC-135	КС-130 Н	C-5	WBP-16
Estructura	20,9	25,9	36,2	24,57
Planta de Potencia	7,2	10,9	5,3	7,25
Sistemas	4,3	10,5	5,7	8,92
Peso en Vacío	31,902	43,178	47,2	33,49
Alas	8,5	9	13	6,407
Estabilizadores	1,7	2,2	1,6	3,035
Fuselaje	6,4	9,5	15,4	4,74
Tren de Aterrizaje	3,4	3,4	5	3,15

Centro De Gravedad

Puntos de Interés

Misión de Primera Línea

• Misión Ferry

Inicio Misión	8,506 m	45,98%
Inicio Crucero	8,52 m	46,03%
Fin Crucero	8,67 m	45,86%
Fin Misión	8,7 m	47,03%

Diagrama V-N

Dato	Valor [S.I.]	Valor [Imperial]	Velocidad	Valor
Peso	33574,5 <i>kg</i>	74019,014 <i>lb</i>	V_S	36,07 keas
Superficie	100 m²	968,75 ft^2	V_A	57,04 keas
Densidad	0,9 kg/m ³	0,0562 <i>lb/ft</i> ³	V_C	311,01 keas
C_{Lmax}	1,9		V_D	388,77 keas
$C_{Lmaxnegativo}$	-0,4		V _{Snegativa}	78,62 keas

	Positivo	Negativo
n_{lim}	2,5	-2
n_{ult}	4	-3
Diagrama V-N

Cargas en el Ala

Cortante Máximo540,756 KNFlector Máximo3512,123 KNm

Cargas en el Ala

39

• Aterrizaje Nivelado

• Dos Puntos

	Tren Principal
Axil	289,09 KN
Cortante	1,5 KN
Flector	1,725 KNm

• Tres Puntos

	Tren Principal	Tren de Morro
Axil	253,68 KN	70,83 KN
Cortante	1,32 KN	0,367 KN
Flector	1,51 KNm	0,422 KNm

• Tail Down Landing

	Tren Principal
Axil	277,42 KN
Cortante	81,32 KN
Flector	93,52 KNm

• One Wheel Landing

	Tren Principal
Axil	289,091 KN

• Carrera de despegue

	Tren Principal	Tren de Morro
Axil	297,88 KN	84,46 KN

• Remolque

	Tren Principal	Tren de Morro
Axil	128,33 KN	32,42 KN
Cortante	-	18,59 KN
Flector	-	21,38 KNm
		42

• Balance de Frenado Aterrizaje (Sólo Tren Principal)

	Tren Principal
Axil	173,46 KN
Cortante	138,763 KN
Flector	159,58 KNm

• Balance de Frenado Aterrizaje

	Tren Principal	Tren de Morro
Axil	151,59 KN	43,73 KN
Cortante	121,27 KN	34,98 KN
Flector	139,47 KNm	40,23 KNm

• Balance de Frenado Despegue (Sólo Tren Principal)

	Tren Principal
Axil	170,05 KN
Cortante	136,04 KN
Flector	156,45 KNm

• Balance de Frenado Despegue

	Tren Principal	Tren de Morro
Axil	148,62 KN	42,87 KN
Cortante	118,9 KN	34,29 KN
Flector	136,73 KNm	39,44 KNm

44

Departamento de Aerodinámica

Jason Wander Cóndor Romero

Amador Gómez Hidalgo

- **1.** ESTUDIO DE PERFILES
- 2. SELECCIÓN CONFIGURACIÓN ALAR
- **3.** ESTABILIZADORES (HTP Y VTP)
- 4. DISPOSITIVOS HIPERSUSTENTADORES (HLD)
- 5. POLARES DE LA AERONAVE
- 6. MEJORAS DE LA EFICIENCIA AERODINÁMICA

Estudio de perfiles

Análisis inicial del perfil montado en C-130 Hercules

Estudio de perfiles

Comparación de tres perfiles NACA

NACA	C ₁₀	C_{lmax}	α_{stall}	Stall q**	$C_{l\alpha}$	C_{m0}	C _{dmin}	$C_l/C_d _{max}$	esp*
0010-	0.1812	1.8107	19°	mod	0.1091	-0.0429	0.00443	145.247	hig
34									
63-206	0.1739	1.8346	17°	mod-	0.1106	-0.0419	0.00435	145.97	me
66-206	0.1724	1.6979	15.75°	mod-	0.1090	-0.0422	0.00429	143.417	me
*espacio interior; **stall quality(mod: moderate)									48

*espacio interior; **stall quality(mod: moderate)

Estudio de perfiles

Comparación de tres perfiles NACA

	NACA	C10	C_{lmax}	α_{stall}	Stall q**	Clα	C_{m0}	C _{dmin}	$C_l/C_d _{max}$	esp*
	0010-	0.1812	1.8107	19°	mod	0.1091	-0.0429	0.00443	145.247	hig
	34									
• [63-206	0.1739	1.8346	17°	mod-	0.1106	-0.0419	0.00435	145.97	me
	66-206	0.1724	1.6979	15.75°	mod-	0.1090	-0.0422	0.00429	143.417	me
	*espacio interior; **stall quality(mod: moderate)								49	

Comparación de distintas configuraciones alares

S=110 AR=9,43	Preliminar	C-130 Hercules	C-295	Hexagonal E=0.335	Aproximación Elíptica
CL_0	0.1232	0,1234	0,1245	0.1253	0.1258
CL_{α}	4.7928	4.81	4,804	4.828	4.855
α_{Stall} [°]	16.5	14,5	16	16.5	14.2
E _{Max}	38.876	38.813	38.785	38.9	39

$$e = \frac{1}{1 + \sum_{n=2}^{\infty} \left(\frac{a_n}{a_1}\right)^2}$$
$$C_{Di} = \frac{C_L^2}{\pi \Lambda e}$$

S=110 AR=9,43	Preliminar	C-130 Hercules	C-295	Hexagonal E=0.335	Aproximación Elíptica
CL ₀	0.1232	0,1234	0,1245	0.1253	0.1258
CL_{α}	4.7928	4.81	4,804	4.828	4.855
α _{Stall} [°]	16.5	14,5	16	16.5	14.2
E_{Max}	38.876	38.813	38.785	38.9	39

Configuración definitiva: S=100m² AR=9.43

CL_0	CL_{lpha}	$CL_{max}(clean)$	α_{Stall} (clean)
0.13	4.97	1.36	14.6°

Estabilizadores (VTP Y HTP)

	CL ₀	CL_{α}	$CL_{max}(clean)$	α_{Stall} (clean)
HTP (S=35m ² , AR=4.11, Est=1)	0	3.7	1.68	27.3°
VTP (S=17.5m ² , AR=1.43, Est=0.73)	0	1.53	0.65	32.1°

Dispositivos hipersustentadores (HLD)

1ª ELECCIÓN: Handley Page Slot and 0.40c Fowler flap, sin embargo estaba sobredimensionado para nuestra aeronave.

TENIENDO FLAP EN TODA LA ENVERGADURA DISPONIBLE DEL ALA $\approx 65\% -> \Delta \delta_{(flap_LNDG)} \ll 20^{\circ}$

2ª ELLECIÓN: Double-slotted 0.3c flap se adecúa mejor a nuestro avión. Con esta configuración se obtienen valores de deflexión coherentes y óptimos.

TENIENDO FLAP EN TODA LA ENVERGADURA DISPONIBLE DEL ALA $\approx 65\%$ -> $\Delta\delta_{(flap_T0)} < 38^\circ < \Delta\delta_{(flap_LNDG)}$

Dispositivos hipersustentadores (HLD)

0,68x(b/2)	DESPEGUE	DESCARGA	ATERRIZAJE
$\Delta \delta_{flap}$	36.9°	15.8°	39.1°

Coeficiente de resistencia parasitaria

C _{D0}	ALA+HTP+ VTP	FUSELAJE	MOTOR	CARENADO DE TREN	TREN	UPSWEEP	FLAPS	TOTAL
Despegue	0.0068	0.0025	0.002	0.001	0.0242	0.0056	0.0167	0.0602
Subida	0.0067	0.0025	0.0019	0.001	0	0.0056	0	0.0182
Crucero 1/2	0.0067	0.0024	0.0018	0.001	0	0.0056	0	0.0180
Descarga	0.0068	0.0025	0.0019	0.001	0	0.0056	0.018	0.0369
Aterrizaje	0.0068	0.0025	0.002	0.001	0.0242	0.0056	0.0205	0.0645
					A	LA+HTP+VTP		

- **FUSELAJE**
- MOTOR
- CARENADO TREN
- **UPSWEEP**
- TREN
- **FLAPS**
- ■L&P **(3%**)

Mejoras de la eficiencia aerodinámica

Winglet

Se modifica estela del ala provocando una reducción de la resistencia inducida del ala del 5%

Smooth molded composite

Con este tipo de revestimiento reducción de la resistencia parasitaria del 5.56%

Departamento de Estabilidad

Juan José Blasco Burguillos Alberto Gómez Alonso

1. ESTABILIDAD ESTÁTICA

- 1. LONGITUDINAL
- 2. LATERAL-DIRECCIONAL
- 2. ESTABILIDAD DINÁMICA
 - 1. LONGITUDINAL
 - 2. LATERAL-DIRECCIONAL

Objetivos

- Ofrecer soluciones que aseguren una aeronave estable en las diferentes fase de la misión.
- Optimizar superficie alar y superficies estabilizadoras.
- Optimizar ángulo de ataque durante el vuelo.

Análisis del progreso

Análisis del progreso

Superficie Estabilizadores (m²)

- Estudio para los diferentes centros de gravedad
 - Equilibrio estático de momentos en el eje longitudinal.
 - Margen estático superior al 15%

SM _{PL}	SM _{PL-NF}	SM _{NPL}	SM _{NPL-NF}	SM _{NPL-FFERRY}
17.38%	15.63%	22.13%	15%	24.83%

• Centro de gravedad más adelantado:

Misión	Distancia respecto al morro	Distancia respecto al morro adimensionalizada
Primera Línea	8.506 m	45.97 %
Ferry	8.497 m	45.93 %

• Centro de gravedad más atrasado

Misión	Distancia respecto al morro	Distancia respecto al morro adimensionalizada
Primera Línea	9.177 m	49.61%
Ferry	9.184 m	49.64 %

• Evolución del CG

• Misión Descarga

Evolución del CG

• Geometría del Estabilizador Horizontal

Estabilizador horizontal	Elevador		
Superficie	35 m ²	Superficie	10.28 m^2
Cuerda en la raíz	2.92 m	S_e/S_H	0.29
Cuerda en la punta	2.92 m	c_e/c_H	0.3
Alargamiento	4.11	$y_0/(b/2)$	0.02
Posición del c.a. desde el morro	16.34 m	$y_{f}/(b/2)$	1

Estabilidad Longitudinal

Estabilidad Longitudinal

• Derivadas de Estabilidad Longitudinal

 $C_{T_{x_u}} < C_{D_u} \longrightarrow \begin{cases} C_{T_{x_u}} = -0.0640 \\ C_{D_u} = 0.0021 \end{cases}$ $C_{L_{\alpha}} > 0 \longrightarrow C_{L_{\alpha}} = 6.3713 \\ C_{M_{\alpha}} < 0 \longrightarrow C_{M_{\alpha}} = -1.1063 \\ C_{M_q} < 0 \longrightarrow C_{M_q} = -25.4664 \\ C_{M_u} \ge 0 \longrightarrow C_{M_u} = 0 \end{cases}$

• Alerones

• 45° en 1.4 segundos (clase II)

Alerones		
Superficie	2.99 m ²	
c_a/c_w	0.3	
$y_0/(b/2)$	0.67	
$y_{f}/(b/2)$	0.97	

• Gerometría del estabilizador vertical

Estabilizador vertical		
Superficie	17.5 m^2	
Cuerda en la raíz	4.08 m	
Cuerda en la punta	2.92 m	
Alargamiento	1.43	
Flecha en el b.a.	39°	
Flecha en el b.s.	30°	
Posición del c.a. desde el morro	16.5 m	

Rudder		
Superficie	4.73 m^2	
c_r / c_v	0.3	
$z_0/(b/2)$	0.05	
$z_f/(b/2)$	0.95	

• Geometría del estabilizador vertical

• Fallo de motor

Fallo de motor		
phi	-3.9141	
da	-1.7148	
dr	8.6505	

• Ángulo de resbalamiento

Ángulo de resbalamiento		
phi	0.6673	
da	-0.9735	
dr	11.092	

• Derivadas de Estabilidad Lateral-Direccional

• Autovalores Dinámica Longitudnial

Nivel II Categoría B

81

• Fugóide

Frecuencia Natural	Amortiguamiento	Periodo	Tiempo Mitad
0.0826 rad/s	0.351	81.18 s	23.85 s

Normativa	MIL-F-8785C	FAR 25
Amortiguamiento	≥ 0	Sin requerimientos

Corto Periodo

Frecuencia Natural	Amortiguamiento	Periodo	Tiempo Mitad
1.483 rad/s	0.60347	5.3132 s	0.77432 s

Normativa	MIL-F-8785C	FAR 25
Amortiguamiento	$0.2 \le \xi \le 2$	Debe ser muy amortiguado

Respuesta Dinámica Longitudinal ante un Pitch Angle de 3

о

• Autovalores Dinámica Lateral-Direccional

Nivel II Categoría B

• Balanceo Holandes

Frecuencia Natural	Amortiguamiento	Periodo	Tiempo Mitad
1.6792 rad/s	0.2127	3.8295 s	1.9404 s

Normativa	MIL-F-8785C	FAR 25
Amortiguamiento	≥0.02	> 0
Frecuencia Natural	≥0.4	Sin requerimientos
Amortiguamiento*Frecuencia Natural	≥0.05	Sin requerimientos

Nivel II Categoría B

Modo	Egniral		
• Modo Espirar		Tiempo Mitad	
		104.0844 s	
	Normativa	MIL-F-8785C	FAR 25
	Tiempo Doble	$\geq 8 s$	Sin requerimientos

• Modo Convergencia en Balance

Tiempo Mitad

0.082362 s

Normativa	MIL-F-8785C	FAR 25
Tiempo Roll	\leq 3 s	Sin requerimientos

Departamento de Actuaciones

Gerardo Aguilar Hidalgo José Luis Jiménez Galiano

- 1. SELECCIÓN CARGA ALAR
- 2. PLANTA PROPULSORA
- **3.** CURVAS POTENCIA(V,H) Y SFC(V,H)
- 4. ANÁLISIS DE MISIONES: PRIMERA LÍNEA
- 5. ESTUDIOS PARAMÉTRICOS V, H CTES
- 6. ESTUDIOS PARAMÉTRICOS CL, H CTES
- 7. ANÁLISIS DE MISIONES: FERRY
- 8. DIAGRAMA CARGA DE PAGO-ALCANCE

Selección de carga alar

$$P_{SL}/W_{TO} = 27$$

$$W_{TO}/S = 3397 N/m^2$$

Planta propulsora

El motor elegido es: AE 1107C-Liberty (T406-AD-400)

 $P_{sL} = 6150 \ shp$ $P_{sL} = 0.426$ Longitud = 1.95m Diámetro = 0.85m $Peso = 663 \ Kg$

Nota: El peso es teniendo en cuenta la hélice y caja reductora

Potencia disponible

Consumo específico

- Criterio de optimización: mínimo coste de operación
 - Indicador: CAPM

 $CAPM = \frac{(t \cdot CI + Mfuel) \cdot costfuel}{D \cdot PL/100}$, CI = 1, costfuel = 0.97 \$/kg

• Objetivo: minimizar suma de combustible y tiempo empleado

- Optimización por tramos:
 - Despegue
 - Palanca de gases al máximo para acortar carrera y tiempo de despegue
 - Subidas
 - Palanca de gases al máximo continuo
 - Velocidad de subida de 250 nudos (máximo permitido por FAR, para h<10000 ft)
 - Descensos
 - Motor a ralentí
 - Velocidad de descenso de 250 nudos (máximo permitido por FAR , para h<10000 ft)

- Optimización por tramos:
 - Suelta de carga:
 - Modelada como 3 virajes consecutivos seguidos de la suelta de carga de pago
 - Radio de viraje: 622 m, correspondiente a una circunferencia de 300 acres de área
 - Velocidad de viraje: 75 m/s
 - Aterrizaje:
 - Motor a ralentí para acortar distancia de aterrizaje

- Optimización por tramos:
 - Crucero:
 - Velocidad de crucero mayor de 250 nudos, necesidad de tramos de aceleración y frenado
 - Distancia de crucero reducida por subidas, descensos y tramos de aceleración
 - Necesidad de estudios que muestren la influencia de altura y velocidad de crucero en el CAPM

Estudios parámetricos, V,h cte

- Conclusiones del estudio:
 - Baja influencia de la altitud
 - Velocidades de crucero de 150 m/s
- Resultados de simulación:
 - Consumo de combustible: 2311 kg
 - Tiempo empleado: 5085 s = 1h 24' 30"
 - CAPM: 8.76 cents \$

Análisis de misiones: ferry

- Criterio de optimización:
 - Dada una distancia, consumir lo mínimo
 - Configuración de máximo alcance en todos los tramos
 - Altitud de crucero principal de 10000 m
 - Altitud de crucero de desvío de 1500 m
- Resultados de simulación:
 - Consumo de combustible: 4877 kg
 - Tiempo empleado: 45646 s = 12h 40'

Diagrama carga de pago-Alcance

Diagrama carga de pago-Alcance

METAL FEATHER WING ENGINEERING

Gracias por su atención