

Revisión de Tareas para la 2^a Entrega

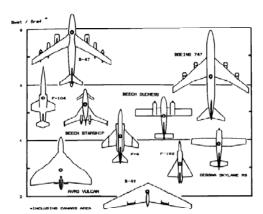
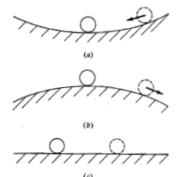



Fig. 3.5 Wetted area ratios.

Sergio Esteban Roncero
Departamento de Ingeniería Aeroespacial
Y Mecánica de Fluidos

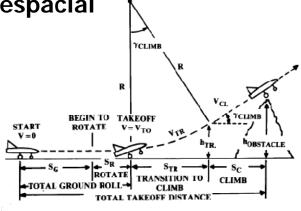
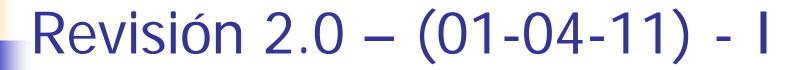
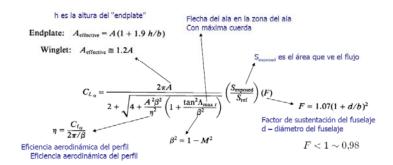



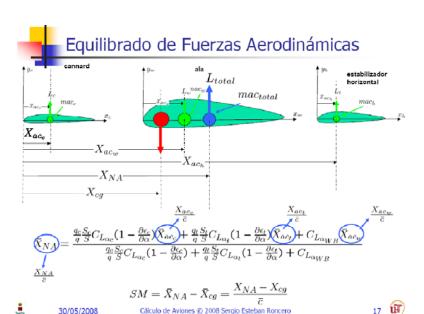
Fig. 17.17 Takeoff analysis.


Diseño:

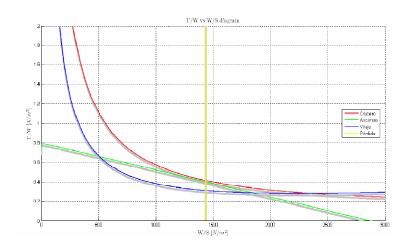
- Definir diseño final a grandes rasgos, no necesariamente en CAD en esta primera versión, pero ayudaría.
- No hay marcha atrás.
 - Enseñar todas las cartas.
- Interacción por ubicar "bloques" de elementos
 - Geometría de superficies (Aerodinámica y Estabilidad)
 - Geometría de motores, sistemas propulsores (Propulsión)
 - Estimación de pesos por "bloques" (Estructuras)

Aerodinámica:

- **Selección preliminar** de los **perfiles** para las superficies sustentadoras.
 - Aviones semejantes
- Definir la precisión en los **modelos** de **polares** más exactos.
- Determinación inicial de las características iniciales aerodinámicas.
- Interacción:
 - Sustentación requerida: pesos (Estructura)
 - Generación de parámetros aerodinámicos (Estabilidad y Actuaciones)



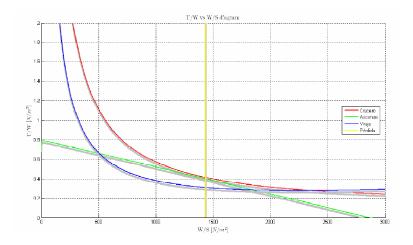
Revisión 2.0 – (01-04-11) - II


Estabilidad:

- Estudio del trimado:
 - Viabilidad del diseño mediante estudio de trimado.
 - Plantear problemas de configuración y prever solución para rev. 3.
- Inicio de la estabilidad Estática.
- Inicio modelado (derivadas estabilidad).
- Interacción:
 - Dimensionado e ubicación superficies (Diseño)
 - Corrección pesos (Estructuras)
 - Necesidades de Estabilidad (Aerodinámica)

Estructuras:

- Estudio de masa (fracciones) preliminar para poder proveer estimación centro gravedad.
- Identificar las cargas que actúan en la aeronave en diferentes configuraciones.
- Diseño de estructura preliminar y estudio de ajuste de pesos.
- Interacciones
 - Viabilidad física de ubicación de sistemas (Diseño)



Revisión 2.0 – (01-04-11) - II

- Propulsión y Actuaciones:
 - Primera estimación de actuaciones (grandes rasgos).
 - Diagrama T/W vs W/S
 - Definir planta motora.
 - Interacción: En función de las "performances calculadas" exigirá modificaciones de todas las ramas

Revisión de las diferentes áreas

- Diseño
- Aerodinámica
- Estabilidad y control
- Estructuras y Pesos
- Actuaciones y Propulsión

Diseño:

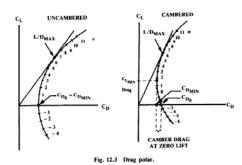
- Definir diseño final a grandes rasgos, no necesariamente en CAD en esta primera versión, pero ayudaría.
- No hay marcha atrás.
 - Enseñar todas las cartas.
- Interacción por ubicar "bloques" de elementos
 - Geometría de superficies (Aerodinámica y Estabilidad)
 - Geometría de motores, sistemas propulsores (Propulsión)
 - Estimación de pesos por "bloques" (Estructuras)

Diferente en función del diseño:

- Adecuación de las cargas de pago
- Adecuación de las misiones:
- Documentación detallada en la web:
 - Dimensiones, requisitos, etc...

Aerodinámica

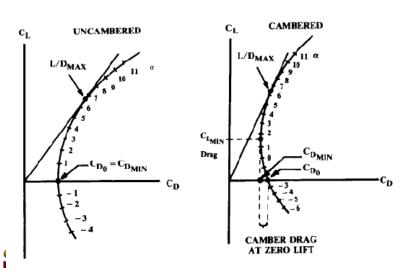
- Selección preliminar de los perfiles para las superficies sustentadoras.
 - Aviones semejantes
- Definir la precisión en los modelos de polares más exactos.
- Determinación inicial de las características iniciales aerodinámicas.
- Interacción:
 - Sustentación requerida: pesos (Estructura)
 - Generación de parámetros aerodinámicos (Estabilidad y Actuaciones)



Aerodinámica - I

- Lo que se espera:
 - Polar parabólica de coeficientes constantes:
 - CD del avión
 - Configuración limpia
 - Vuelo de subida
 - Vuelos de crucero
 - Configuración sucia
 - Despegue y aterrizaje

- Características aerodinámicas de los perfiles:
 - Estimar C_L
 - C_{Lo} , $C_{L\alpha}$, C_{Lo} , $C_{M\alpha}$
 - Ala, canard, deriva horizontal y vertical, cola en V...
 - Corrección para alas finitas
- Como conseguirlo:



Aerodinámica - II

- CD del avión
 - Configuración limpia: Tren retraído, flaps recogidos
 - Vuelo de subida
 - Vuelos de crucero y alcance
 - Configuración sucia: flaps y tren de aterrizaje desplegados
 - Despegue y aterrizaje
- Como conseguirlo:
 - Modelo de polar parabólica de coeficientes constantes

$$C_D = C_{D_0} + KC_L^2 \Longrightarrow K = \frac{1}{\pi Ae}$$

Component Buildup Method

$$(C_{D_0})_{\text{subsonic}} = \frac{\Sigma (C_{f_c} F F_c Q_c S_{\text{wet}_c})}{S_{\text{ref}}} + C_{D_{\text{misc}}} + C_{D_{\text{L&P}}}$$

Aerodinámica - III

- Características aerodinámicas de los perfiles:
 - Estimar C_L
 - CLmax:
 - configuración limpia métodos gráficos transparencias de clase: ejemplo siguiente página
 - configuración sucia: tunel de viento virtual: ejemplo siguientes diapositivas y ejemplo practico de clase
 - Métodos graficos
 - \mathbf{C}_{Lo} , $\mathsf{C}_{\mathsf{L}\alpha}$, C_{Lo} , $\mathsf{C}_{\mathsf{M}\alpha}$
 - Ala, canard, deriva horizontal y vertical, cola en V...
 - Corrección para alas finitas

$$C_{L_{\alpha}} = \frac{2\pi A}{2 + \sqrt{4 - \frac{A^2 \beta^2}{\eta^2} \left(1 + \frac{\tan^2 \Lambda_{\max f}}{\beta^2}\right)}} \left(\frac{S_{\text{exposed}}}{S_{\text{ref}}}\right) (F)$$

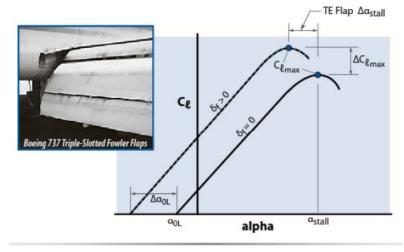


Figure 9.8 Construction of section lift curves for TE flaps.

Entrada en pérdida - II

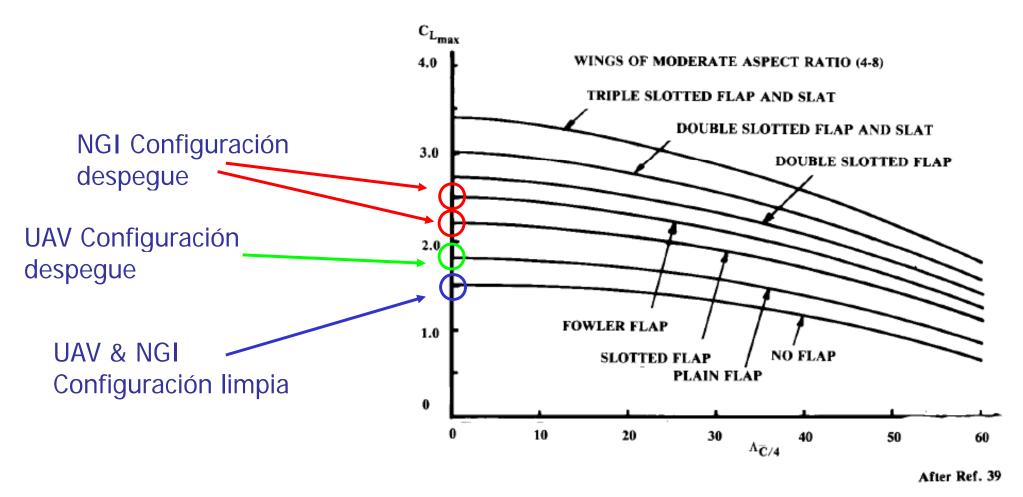
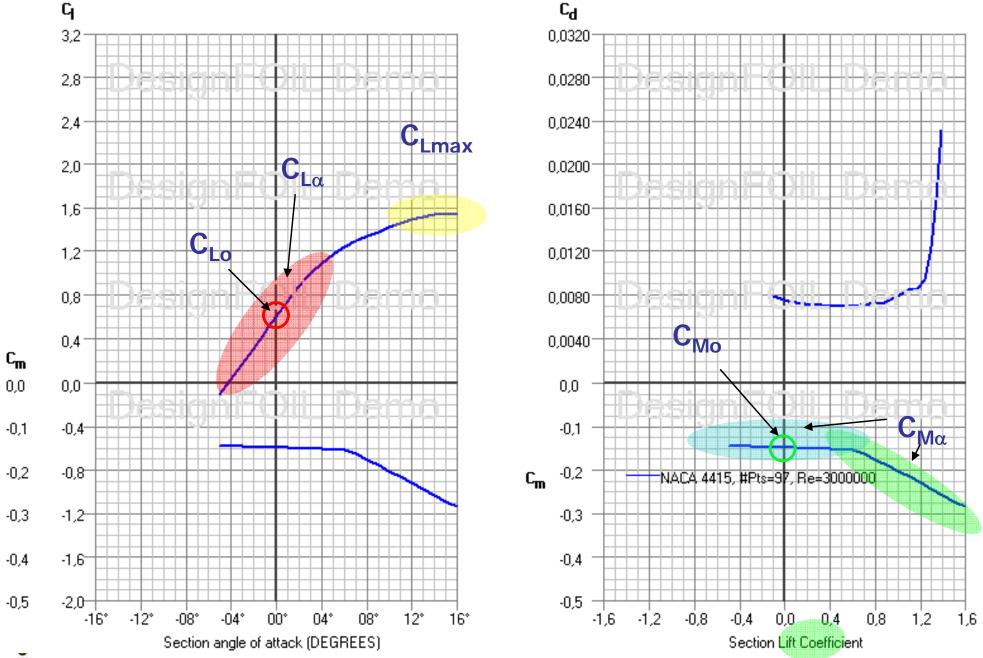
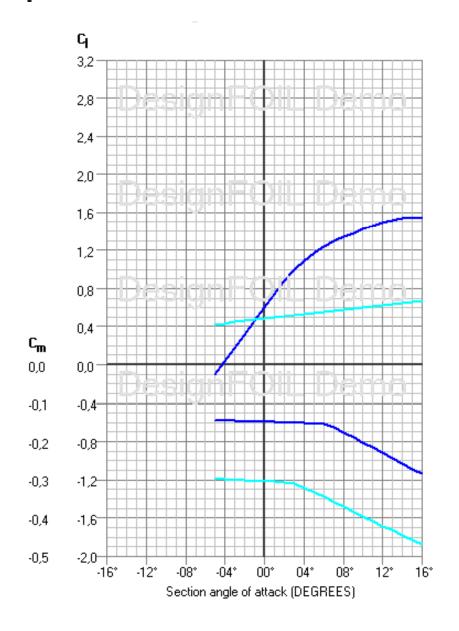
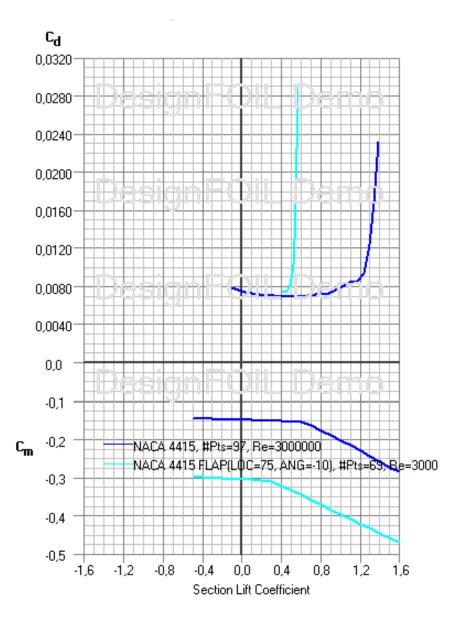



Fig. 5.3 Maximum lift coefficient.

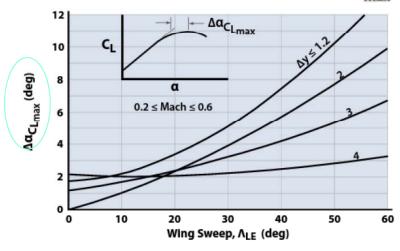
Métodos Virtuales - I

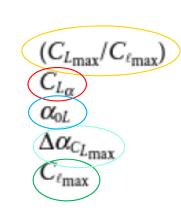




Métodos Virtuales - II

Cálculo C_{Lmax} – High Aspect Ratio - I


Wing Lift Coefficient


• Obtener C_{Lmax} y α_{STALL} para el ala básica

Ángulo de ataque para sustentación nula

$$C_{L_{\max}} = \frac{C_{L_{\max}}}{C_{\ell_{\max}}} C_{\ell_{\max}}$$

$$\alpha_{\text{stall}} = \frac{C_{L_{\text{max}}}}{C_{\ell\alpha}} + \alpha_{0L} + \Delta \alpha_{C_{L_{\text{max}}}}$$

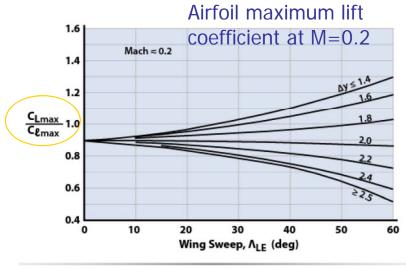
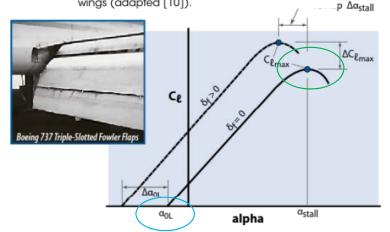



Figure 9.16 Angle-of-attack increment for subsonic maximum lift of high-AR wings (adapted [10]).

Figure 9.15 Subsonic maximum lift of high-AR wings (adapted [10]).

$$C_{L_{\alpha}} = \frac{2\pi A}{2 + \sqrt{4 + \frac{A^2 \beta^2}{\eta^2} \left(1 + \frac{\tan^2 \Lambda_{\max t}}{\beta^2}\right)}} \left(\frac{S_{\text{exposed}}}{S_{\text{ref}}}\right) (F)$$

Cálculo C_{Lmax} – Low Aspect Ratio - I

Wing Lift Coefficient

Obtener C_{Lmax} y α_{STALL} para el ala básica

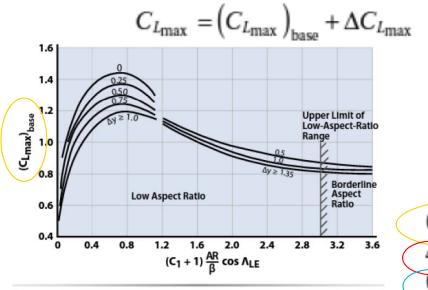
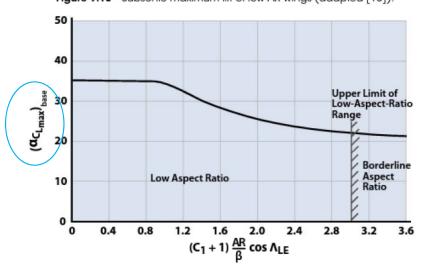



Figure 9.18 Subsonic maximum lift of low-AR wings (adapted [10]).

 $\alpha_{\text{stall}} = (\alpha_{C_{L_{\text{max}}}})_{\text{base}} + \Delta \alpha_{C_{L_{\text{max}}}}$ $(C_{L_{\text{max}}})_{\text{base}}$ -0.2 12 $(C_2 + 1)$ AR tan Λ_{LE}

Figure 9.19 Subsonic maximum-lift increment for low-AR wings (adapted [10]).

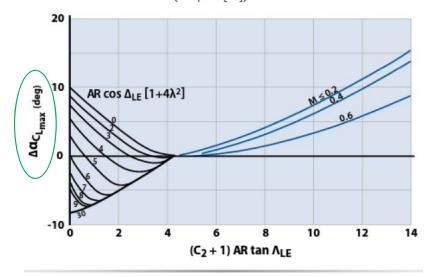
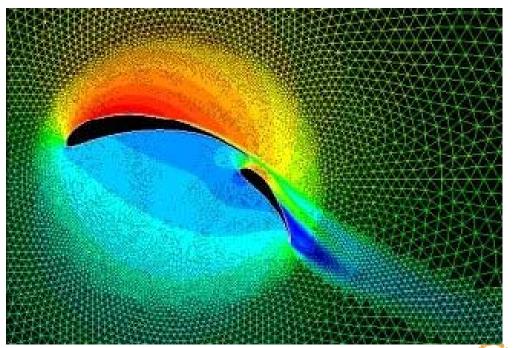


Figure 9.21 Angle-of-attack increment for subsonic maximum lift of low-AR wings.

 $\Delta C_{I_{max}}$

 $\Delta lpha_{c_L}$ _{max}



Ejemplo de Base de Datos

- UIUC Airfoil Data Site
 - http://www.ae.uiuc.edu/m-selig/ads.html
 - Michael Selig
 Department of Aerospace Engineering
 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
 - Software y bases de datos sobre información de perfiles.

- http://www.ae.uiuc.edu/m-selig/ads/aircraft.html
- David Lednicer
 Analytical Methods, Inc.
 2133 152nd Ave NE
 Redmond, WA 98052
 dave@amiwest.com

Aerodinámica - IV

- Selección de perfiles aerodinámicos
 - Etapas de complejidad:
 - Empezar con perfiles simples.
 - Análisis en
 - Continuar con perfiles de aeronaves similares:
 - Bases de datos volcadas en la página de la asignatura:
 - The Incomplete Guide To Airfoil Usage
 - <u>UIUC Airfoil Coordinates Database Version 2.0 (over 1550 airfoils)</u>
 - Mejorar los perfiles seleccionados

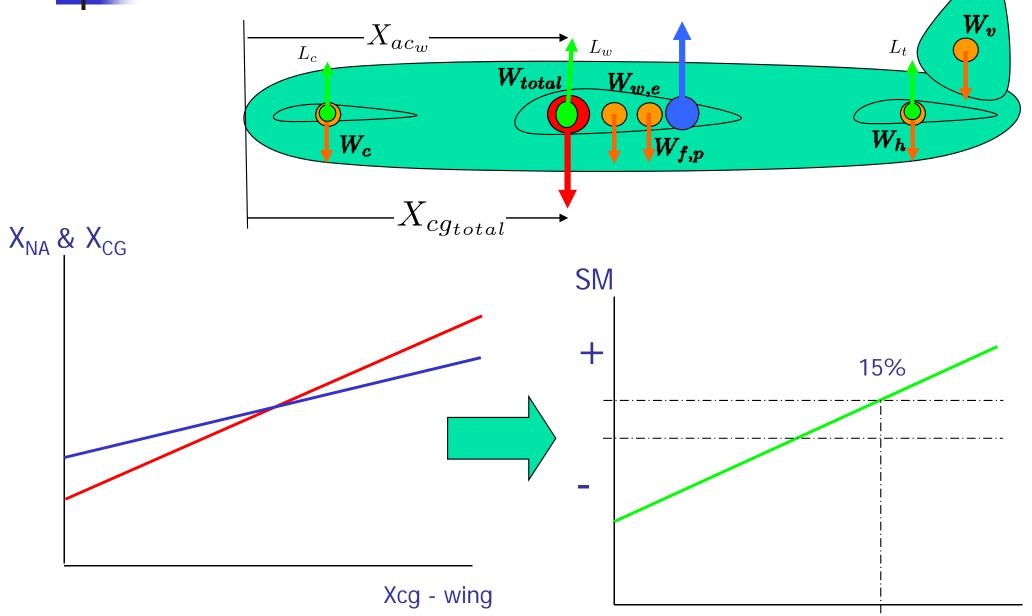
Estabilidad y Control

Estabilidad:

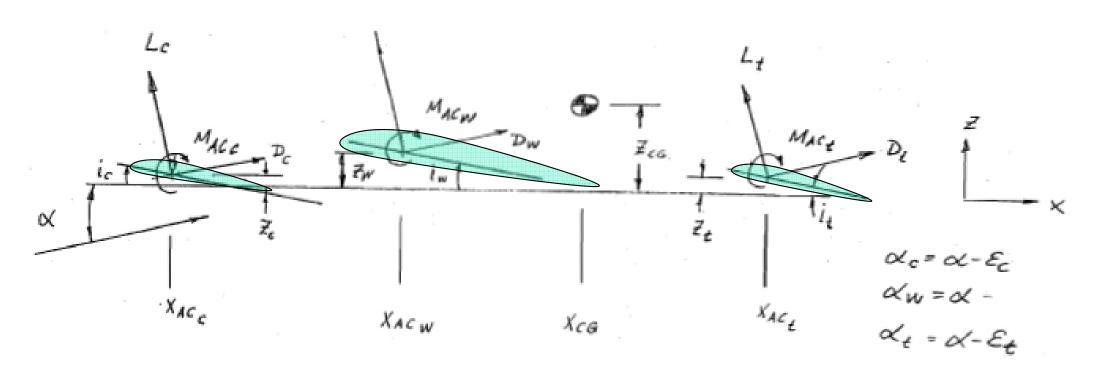
- Estudio del trimado:
 - Viabilidad del diseño mediante estudio de trimado.
 - Plantear problemas de configuración y prever solución para rev. 3.
- Inicio de la estabilidad Estática.
- Inicio modelado (derivadas estabilidad).
- Interacción:
 - Dimensionado e ubicación superficies (Diseño)
 - Corrección pesos (Estructuras)
 - Necesidades de Estabilidad (Aerodinámica)

Estabilidad y Control - I

- Trimado Longitudinal
 - Múltiples posibles variaciones para conseguir el trimado
 - Incidencias de las superficies
 - Superficies alares
 - Distancias de las superficies
 - Centrarse en los elementos que pueden variar:
 - Empezar con la variación de la incidencia estableciendo las dimensiones que tenéis en prediseño.
 - Variación de distancias (dentro de la lógica que permita la parte de diseño)
 - Superficies siempre cumpliendo actuaciones


 - Considerar la validez de los resultados obtenidos
 - Resistencia de trimado
 - Verificar siempre las ecuaciones del sumatorio de fuerzas y momentos para buscarle lógica a lo que está ocurriendo.
 - Centrarse en una velocidad (crucero) para el dimensionado inicial
 - Variación del centro de gravedad en función del movimiento de superficies:
 MARGEN ESTÁTICO
 - Variación de la efectividad de las superficies de control C_{Lõe} y C_{Mõe}

Variación física de las superficies



Análisis de Trimado – I

$$\sum F_x = W - L = \frac{W}{qS} - C_{L_0} - C_{L_\alpha}\alpha - C_{L_{\delta_e}}\delta_e$$
$$\sum M = 0 = C_{M_0} + C_{M_\alpha}\alpha + C_{M_{\delta_c}}\delta_e$$

Estructuras

- Estimación de los pesos del avión en función de métodos estadísticos empleados por las industrias
 - Estudio de masa (fracciones) preliminar para poder proveer estimación centro gravedad.
 - Identificar las cargas que actúan en la aeronave en diferentes configuraciones.
 - Diseño de estructura preliminar y estudio de ajuste de pesos.
 - Interacciones
 - Viabilidad física de ubicación de sistemas (Diseño)

Estimación de Pesos - I

- Determinación de forma estadística.
- Previo a tener valores más representativos obtenidos mediante modelado en CAD.
 - Diferentes métodos para estimar el peso de diferentes componentes:
 - Airplane Design Part V : Component Weight Estimation
 - USAF Method
 - GM Method
 - Cessna Method
 - Torenbeek Method
 - Método estadístico
 - Raymer Method
 - Grupos de pesos para diversas aeronaves
 - Airplane Design Part V : Component Weight Estimation
 - Sirve para determinar mediante comparativas entre los diversos aviones el peso aproximado de algunas de las partes.
 - Técnicas de normalizados para extrapolar posibles líneas de tendencia

Estimación de Pesos - II

Table 15.1 Group wei	ght format
----------------------	------------

	Weight, lb	Loc., ft	Moment, ft-lb		Weight, Ib	Loc., ft	Moment, ft-lb
Structures	4,526		106,879	Equipment	4,067		80,646
Wing	1,459.4	23.3	34,004	Flight controls	655.7	21.7	14,229
Horizontal tail	280.4	39.2	10,992	APU		0	0
Vertical tail		0	0	Instruments	122.8	10.0	1,228
Ventral tail		0	0	Hydraulics	171.7	21.7	3,726
Fuselage	1,574	21.7	34,156	Pneumatics		21.7	0
Main landing gear	631.5	23.8	15,030	Electrical	713.2	21.7	15,476
Nose landing gear	171.1	13.0	2,224	Avionics	989.8	10.0	9,898
Other landing gear		0	0	Armament		0	0
Engine mounts	39.1	33.0	1,290	Furnishings	217.6	6.2	1,3497
Firewall	58.8	33.0	1,940	Air conditioning	190.7	15.0	2,860.5
Engine section	21	33.0	693	Anti-icing			0
Air induction	291.1	22.5	6,550	Photographic			0
			0	Load and handling	5.3	15.0	79.5
			0	Misc. equipment and We	1,000	31.8	31,800
			0	Empty weight allowance	547	23.6	12,9237
Propulsion	2,354		70,931	Total weight empty	11,495	23.6	27,1379
Engine(s)—installed	1,517	33.0	50,061				
Accessory drive			0	Useful load	4,985		
Exhaust system			0	Crew	220	15.0	3,300
Engine cooling	172	33.0	5,676	Fuel—usable	3,836	22.3	85,551
Oil cooling	37.8	33.0	1,247	Fuel—trapped	39	22.3	864
Engine controls	20	33.0	660	Oil	50	33.0	1,650
Starter	39.5	15.7	620	Passengers			0
Fuel system/tanks	568	22.3	12,666	Cargo/payload	840	21.7	18,228
			0	Guns			0
			0	Ammunition	0	21.7	0
			0	Misc. useful load			
			0	Takeoff gross weight	16,480	22.0	362,744

Estimación de Pesos - III

Item	Fighters		Transports and bombers		General aviation (metal)			
	lb/ft ²	$\{kg/m^2\}$	lb/ft ²	$\{kg/m^2\}$	lb/ft ²	$\{kg/m^2\}$	Multiplier	Approximate location
Wing	9.0	{44}	10.0	{49}	2.5	{12}	S _{exposed planform}	40% MAC
Horizontal tail	4.0	{20}	5.5	{27}	2.0	{10}	Sexposed planform	40% MAC
Vertical tail	5.3	{26}	5.5	{27}	2.0	{10}	Sexposed planform	40% MAC
Fuselage	4.8	{23}	5.0	{24}	1.4	{7}	Swetted area	40-50% length
Landing geara	0.033	_	0.043		0.057		TOGW	
	Navy: 0.045							
Installed engine	1.3	<u> </u>	1.3	5 5-	1.4	_	Engine weight	
"All-else empty"	0.17	_	0.17	<u> </u>	0.10	_	TOGW	40-50% length

^{15%} to nose gear; 85% to main gear; reduce gear weight by 0.014 W_0 if fixed gear.

Estimación de Pesos - IV

um taraware ar amesyoso specific fo	Weight				
Component	lb	kg ^a			
Missiles					
Harpoon (AGM-84 A)	1200	544			
Phoenix (AIM-54 A)	1000	454			
Sparrow (AIM-7)	500	227			
Sidewinder (AIM-9)	200	91			
Pylon and launcher	$0.12~W_{\rm missile}$				
M61 Gun	missie				
Gun	250	113			
940 rds ammunition	550	250			
Commercial aircraft passenger	190	86			
(includes carry-on)					
Seats					
Flight deck	60	27			
Passenger	32	15			
Troop	11	5			
Instruments					
Altimeter, airspeed, accelerometer, rate of climb, clock, compass, turn & bank, Mach, tachometer,	1–2 each	0.5-1			
manifold pressure, etc.					
Gyro horizon, directional gyro	4-6 each	2-3			
Heads-up display	40	18			
Lavatories	1.22				
Long-range aircraft	$1.11 N_{\rm pass}^{1.33}$	$0.5 N_{\rm pass}^{1.33}$			
Short-range aircraft	$0.31 N_{\rm pass}^{1.33}$	$0.14 N_{\rm pass}^{1.33}$			
Business/executive aircraft	$3.90 N_{\rm pass}^{1.33}$	$1.76 N_{\rm pas}^{1.33}$			
Arresting gear	while the first trade				
Air Force-type	$0.002 \ W_{\rm dg}$				
Navy-type	$0.008~W_{ m dg}$				
Catapult gear					
Navy carrier-based	$0.003 \ W_{\rm dg}$				
Folding wing	u _B				
Navy carrier-based	$0.06~W_{ m wing}$				

^aMass equivalent of weight.

Estimación de Pesos - IV

General Aviation Airplanes:

- Pesos de ala
 - Cessna Method

$$W_{W} = 0.04674 (W_{TO})^{0.397} (S)^{0.360} (n_{ult})^{0.397} (A)^{1.712}$$

$$W_{W} = 0.002933 (S)^{1.018} (A)^{2.473} (n_{ult})^{0.611}$$

USAF Method

$$W_{W} = 96.948[(W_{TO}^{n}_{ult}/10^{5})^{0.65}(A/\cos\Lambda_{1/4})^{0.57}(S/100)^{0.61}x$$

$$x\{(1+\lambda)/2(t/c)_{m}\}^{0.36}(1+V_{H}/500)^{0.5}]^{0.993} \qquad (5.4)$$

Torenbeek Method

$$W_{w} = 0.00125W_{TO}(b/\cos\Lambda_{1/2})^{0.75}[1 + \{6.3\cos(\Lambda_{1/2})/b\}^{1/2}]x$$

$$x(n_{ult})^{0.55}(bS/t_{r}W_{TO}\cos\Lambda_{1/2})^{0.30}$$
(5.5)

- Pesos de cola
 - Cessna Method

USAF Method

$$W_{h} = \frac{3.184 (W_{TO})^{0.887} (S_{h})^{0.101} (A_{h})^{0.138}}{57.5 (t_{r_{h}})^{0.223}}$$

$$W_{v} = \frac{1.68 (W_{TO})^{0.567} (S_{v})^{1.249} (A_{v})^{0.482}}{15.6 (t_{r_{v}})^{0.747} (\cos M_{1/4})^{0.882}}$$

$$W_{h} = 127\{(W_{TO}^{n}ult/10^{5})^{0.87}(S_{h}/100)^{1.2}x$$

$$\times 0.289(l_{h}/10)^{0.483}(b_{h}/t_{r_{h}})^{0.5}\}^{0.458}$$

$$W_{v} = 98.5\{(W_{TO}^{n}ult/10^{5})^{0.87}(S_{v}/100)^{1.2}x$$

$$\times 0.289(b_{v}/t_{r_{v}})^{0.5}\}^{0.458}$$

Torenbeek Method

$$W_{emp} = 0.04(n_{ult}(s_v + s_h)^2)^{0.75}$$

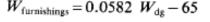
Estimación de Pesos - V

General Aviation Airplanes:

Raymer Method

$$\begin{split} W_{\text{wing}} &= 0.036 S_w^{0.758} W_{\text{fw}}^{0.0035} \bigg(\frac{A}{\cos^2 \Lambda}\bigg)^{0.6} q^{0.005} \lambda^{0.04} \bigg(\frac{100 \ t/c}{\cos \Lambda}\bigg)^{-0.3} (N_z W_{\text{dg}})^{0.49} \\ W_{\text{horizontal}} &= 0.016 (N_z W_{\text{dg}})^{0.414} q^{0.168} S_{\text{ht}}^{0.896} \bigg(\frac{100 \ t/c}{\cos \Lambda}\bigg)^{-0.12} \bigg(\frac{A}{\cos^2 \Lambda_{\text{ht}}}\bigg)^{0.043} \ \lambda_h^{-0.02} \\ W_{\text{vertical}} &= 0.073 \bigg(1 + 0.2 \frac{H_t}{H_v}\bigg) (N_z W_{\text{dg}})^{0.376} q^{0.122} S_{\text{vt}}^{0.873} \bigg(\frac{100 \ t/c}{\cos \Lambda_{\text{vt}}}\bigg)^{-0.49} \bigg(\frac{A}{\cos^2 \Lambda_{\text{vt}}}\bigg)^{0.357} \ \lambda_{\text{vt}}^{0.039} \end{split}$$

$$W_{\text{fuselage}} = 0.052 \text{ S}_{f}^{1.086} (N_z W_{\text{dg}})^{0.177} L_t^{-0.051} (L/D)^{-0.072} q^{0.241} + W_{\text{press}}$$


$$W_{\text{main landing}} = 0.095 (N_l W_l)^{0.768} (L_m/12)^{0.409}$$

$$W_{\text{nosc landing}} = 0.125 (N_l W_l)^{0.566} (L_n/12)^{0.845}$$

$$W_{\text{installed engine}} = 2.575 W_{\text{en}}^{0.922} N_{\text{en}}$$

$$W_{\text{fuel system}} = 2.49 V_t^{0.726} \left(\frac{1}{1 + V_t/V_t}\right)^{0.363} N_t^{0.242} N_{en}^{0.157}$$

$$W_{\text{flight controls}} = 0.053 L^{1.536} B_w^{0.371} (N_z W_{\text{dg}} \times 10^{-4})^{0.80}$$
 $W_{\text{hydraulics}} = 0.001 W_{\text{dg}}$
 $W_{\text{electrical}} = 12.57 (W_{\text{fuel system}} + W_{\text{avionics}})^{0.51}$
 $W_{\text{avionics}} = 2.117 W_{\text{uav}}^{0.933}$
 $W_{\text{air conditioning}} = 0.265 W_{\text{dg}}^{0.52} N_p^{0.68} W_{\text{avionics}}^{0.17} M^{0.08}$

Estimación de Pesos - VI

Cargo Transport Airplanes:

$$W_{\text{wing}} = 0.0051 (W_{\text{dg}} N_z)^{0.557} S_w^{0.649} A^{0.5} (t/c)_{\text{root}}^{-0.4} (1+\lambda)^{0.1} (\cos \Lambda)^{-1.0} S_{\text{csw}}^{0.1}$$

Raymer Method

$$W_{\text{horizontal}} = 0.0379 K_{\text{uht}} (1 + F_w/B_h)^{-0.25} W_{\text{dg}}^{0.639} N_{\downarrow}^{0.10} S_{\text{ht}}^{0.75} L_t^{-1.0} \times K_y^{0.704} (\cos \Lambda_{\text{ht}})^{-1.0} A_h^{0.166} (1 + S_e/S_{\text{ht}})^{0.1}$$

$$W_{\text{vertical}} = 0.0026 (1 + H_t/H_v)^{0.225} W_{\text{dg}}^{0.556} N_z^{0.536} L_z^{-0.5} S_{\text{vt}}^{0.575} (\cos \Lambda_{\text{vt}})^{-1} A_v^{0.35} (t/c)_{\text{root}}^{-0.5}$$

$$W_{\text{fusokage}} = 0.3280 K_{\text{deor}} K_{\text{Lg}} (W_{\text{dg}} N_z)^{0.5} L^{0.25} S_f^{0.302} (1 + K_{\text{ws}})^{0.64} (L/D)^{0.10}$$

$$W_{\text{main landing}} = 0.0106 K_{\text{mp}} W_l^{0.888} N_l^{0.25} L_m^{0.4} N_{\text{mw}}^{0.321} N_{\text{mss}}^{-0.5} V_{\text{stall}}^{0.1}$$

$$W_{\text{nose landing}} = 0.032 K_{np} W_l^{0.646} N_l^{0.2} L_n^{0.5} N_{nw}^{0.45}$$

$$W_{\text{nacelle}} = 0.6724 K_{ng} N_{Lt}^{0.10} N_{w}^{0.294} N_{z}^{0.119} W_{\text{cc}}^{0.611} N_{\text{en}}^{0.984} S_{n}^{0.224}$$

$$W_{\text{starte:}}_{\text{(includes air induction)}} = 49.19 \left(\frac{N_{\text{en}} W_{\text{en}}}{1000} \right)^{0.341}$$

$$W_{\text{engine}}_{\text{engine:}} = 5.0 N_{\text{en}} + 0.80 L_{\text{ec}}$$

$$W_{\text{fuel}}_{\text{production}} = 2.405 V_{t}^{0.606} (1 + V_{t}/V_{t})^{-1.0} (1 + V_{p}/V_{t}) N_{t}^{0.5}$$

$$\begin{split} W_{\text{flight}} &= 145.9 N_f^{0.554} (1 + N_m/N_f)^{-1.0} S_{\text{cs}}^{0.20} (I_y \times 10^{-6})^{0.07} & W_{\text{avionics}} &= 1.73 \ W_{\text{uav}}^{0.983} \\ W_{\text{APU}} &= 2.2 \ W_{\text{APU}} \\ \text{installed} &= 4.509 K_r K_{\text{tp}} N_c^{0.541} N_{\text{en}} (L_f + B_w)^{0.5} \\ W_{\text{hydraulics}} &= 0.2673 \ N_f (L_f + B_w)^{0.937} & W_{\text{anti-ice}} &= 0.002 \ W_{\text{dg}} & W_{\text{handling}} &= 3.0 \times 10^{-4} \ W_{\text{dg}} \end{split}$$

$$W_{\text{electrical}} = 7.291 R_{\text{kva}}^{0.782} L_q^{0.346} N_{\text{gen}}^{0.10}$$

$$W_{\text{military cargo handling system}} = 2.4 \times (\text{cargo floor area}, \text{ft}^2)$$

Estimación de Pesos - VII

 Se utilizan factores de corrección sobre las ecuaciones anteriores en función de los materiales empleados y del tipo de estructura

Table 15.	Weights estimation "fudge factors"				
Category	Weight group	Fudge factor (multiplier)			
Advanced composites	(Wing	0.85-0.90			
	Tails	0.83-0.88			
	{ Fuselage/nacelle	0.90-0.95			
	Landing gear	0.95-1.0			
	Air induction system	0.85-0.90			
Braced wing	Wing	0.82			
Braced biplane	Wing	0.6			
Wood fuselage	Fuselage	1.60			
Steel tube fuselage	Fuselage	1.80			
Flying boat hull	Fuselage	1.25			
Carrier-based aircraft	Fuselage and landing gear	1.2-1.3			

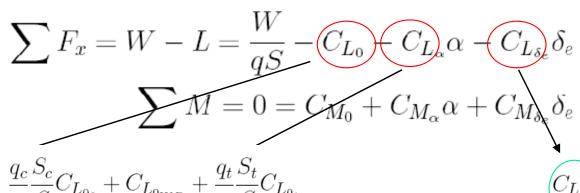
Comparativa de pesos - Aviones similares - I

- Comparativa de pesos por grupos para aviones similares:
 - Airplane Design Part V
 - Turbo/propeller Driven Military Transports (pp 176-177)

Table A10.2a Group Weight Data for Turbo/Propeller

Driven Military Transports

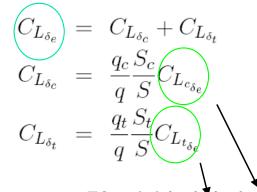
Number of engines: Weight Item, lbs	A.W.(HS) Argosy 4	Douglas C-133A 4	Lockheed C-130H	Breguet 941* 4
Wing Group Empennage Group Fuselage Group Nacelle Group Land. Gear Group Nose Gear Main Gear	10,800 1,300 11,100** 1,200 3,180	27,403 6,011 30,940 3,512 10,635	13,950 3,480 14,695 2,756 5,309 730 4,579	4,096 1,387 6,481 in wing 2,626
Structure Total	27,580	78,501	40,190	14,590


Comparativa de pesos - Aviones similares II

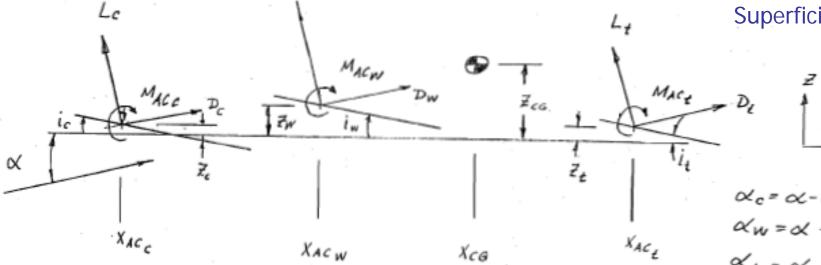
-	A.W.(HS) Argosy	Douglas C-133A	Lockheed C-130H	Breguet 941*					
Number of engines: Weight Item, lbs	4	4	-чанина (закани-	4	Type	A.W. (HS) Argosy	Douglas C-133A	Lockheed C-130H	Breguet 941
Wing Group Empennage Group	10,800 1,300 11,100**	27,403 6,011 30,940	13,950 3,480 14,695	4,096 1,387 6,481	Flight Design Gross Weight, GW, 1bs	82,000	275,000	155,000	58,421
Fuselage Group Nacelle Group Land. Gear Group Nose Gear	1,200	3,512 10,635	2,756 5,309 730	in wing 2,626	Structure/GW Power Plant/GW Fixed Equipm't/GW	0.336	0.285 0.070 0.058	0.259 0.109 0.105	0.250
Main Gear			4,579		Empty Weight/GW	0.561	0.414	0.473	0.508
Structure Total	27,580	78,501	40,190	14,590	Wing Group/GW	0.132	0.100	0.090	0.070
Engines		10,470	13,746		Empenn. Group/GW Fuselage Group/GW	0.016 0.135	0.022 0.113	0.022 0.095	0.024 0.111
Air Induct. System Fuel System		1,338	3,105		Nacelle Group/GW Land. Gear Group/GW	0.015 0.039	0.013 0.039	0.018 0.034	in wing 0.045
Propeller Inst. Propulsion System		5,403 2,081	in eng. in eng.		Take-off Gross		0,003	0.034	0.043
Power Plant Total		19,292	16,851		Wht, W _{TO} , lbs	82,000	275,000	155,000	58,421
					Empty Weight,				
	n struct.	578 1,804	3,582 1,673	1,056	W _E , lbs	46,000	113,814	73,260	29,675
Hydraulic System Pneumatic System		2,678	6 64		Wing Group/S, psf	7.4 2.3	10.3 4.2	8.0 4.2	4.5
Electrical System Electronics		2,004 2,047	2,459 in avioni	cs	Emp. Grp/S _{emp} , psf	2.3	7.2	7.2	2.6
APU Oxygen System		188	651 231		Ultimate Load Factor, g's	3.75*	2.50	3.75*	3.75*
Air Cond. System*** Anti-icing System		2,973	1,684 797		Surface Areas, ft ²				
Furnishings Auxiliary Gear		3,632 117	4,472 6		Wing, S	1,458	2,673	1,745	902
Operating items			532		Horiz. Tail, Sh	327	801	536	320
Fixed Equipm't Total		16,021	16,219		Vert. Tail, S _v	250	641	300	223
Woil ^{+ W} tfo		1,693	1,089		Empenn. Area, Semp	577	1,442	83 6	543
Max. Fuel Capacity Payload (Max.)		60,000 97,162	45,240 33,461		*Assumed				

Análisis de Vuelo Equilibrado - II

$$C_{L_0} = \frac{q_c S_c}{q S} C_{L_{0c}} + C_{L_{0WB}} + \frac{q_t S_t}{q S} C_{L_{0t}}$$


$$+ \frac{q_c S_c}{q S} C_{L_{\alpha c}} (i_c + \epsilon_{0c}) + \frac{q_t S_t}{q S} C_{L_{\alpha t}} (i_t - \epsilon_{0t}) + C_{L_{\alpha WB}} i_w$$

$$C_{L_{\delta c}} = C_{L_{\delta c}} + C_{L_{\delta}}$$


$$C_{L_{\delta c}} = \frac{q_c S_c}{q S} C_{L_{c_{\delta c}}}$$

$$c_{L_{\delta c}} = \frac{q_c S_c}{q S} C_{L_{c_{\delta c}}}$$

$$(C_{L_{\alpha}} = \frac{q_c}{q} \frac{S_c}{S} C_{L_{\alpha_c}} (1 + \frac{\partial \epsilon_c}{\partial \alpha}) + \frac{q_t}{q} \frac{S_t}{S} C_{L_{\alpha_t}} (1 - \frac{\partial \epsilon_t}{\partial \alpha}) + C_{L_{\alpha_{WB}}}$$

Efectividad de las Superficies de control

Efectividad de las superficies de control

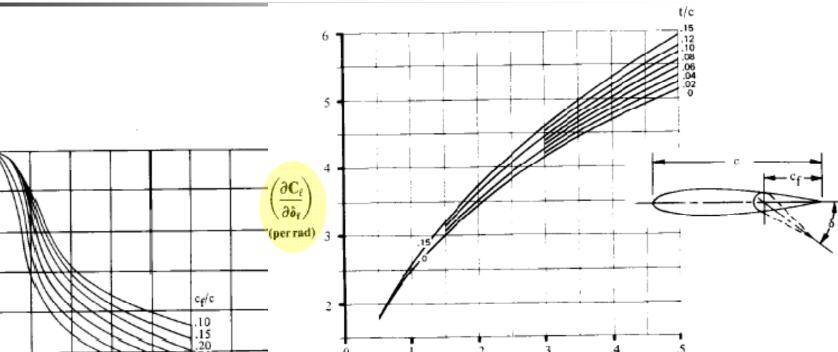


Fig. 16.6 Theoretical lift increment for plain flaps. (Ref. 37)

$$\Delta\alpha_{0L} = -\frac{1}{C_{L_{\alpha}}} \frac{\partial C_{L}}{\partial \delta_{f}} \, \delta_{f}$$

$$\frac{\partial C_L}{\partial \delta_f} = 0.9 K_f \left(\frac{\partial C_\ell}{\partial \delta_f} \right)' \frac{S_{\text{flapped}}}{S_{\text{ref}}} \cos \Lambda_{\text{H.L.}}$$

Fig. 16.7 Empirical correction for plain lift increment. (Ref. 37)

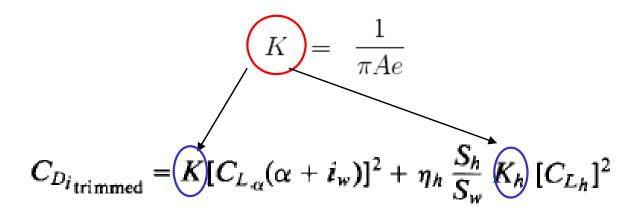
FLAP DEFLECTION, & (deg)

20

ángulo de la línea de bisagra

K,

.2


Análisis de Vuelo Equilibrado - IV

La resolución de los valores de trimado (α y δ_e) para diferentes configuración de crucero (velocidad, altura, peso)

$$\sum F_x = W - L = \frac{W}{qS} + C_{L_0} - C_{L_\alpha}\alpha - C_{L_{\delta_e}}\delta_e$$

$$\sum M = 0 = C_{M_0} + C_{M_\alpha}\alpha + C_{M_{\delta_e}}\delta_e$$

- Es necesario el tener en cuenta que el avión tiene que ser capaz de satisfacer restricciones que no están consideradas en las ecuaciones de trimado:
 - Resistencia añadida por el ángulo de ataque del avión

Actuaciones y Propulsión - I

- Propulsión y Actuaciones:
 - Primera estimación de actuaciones (grandes rasgos).
 - Diagrama T/W vs W/S
 - Definir planta motora.
 - Interacción: En función de las "performances calculadas" exigirá modificaciones de todas las ramas

Actuaciones y Propulsión - II

- Definir las actuaciones de forma precisa en función de sus necesidades:
 - Alturas de vuelo
 - Regímenes de vuelo: crucero, autonomía, ate
 - Velocidades de vuelo (max, min, stall, etc...)
 - Configuración sucia y limpia
 - Velocidades de entrada en pérdida
 - Corrección de los empujes:
 - Corrección para representarlos
 - Corrección para obtener valores razonables
- Análisis concurrente:
 - 1^a etapa

RFP

W/S & T/W

2^a etapa

W/S & T/W

RFP

$$\frac{T_{loiter}}{W_{loiter}} \ge \left(\frac{K}{q} \frac{W_{loiter}}{S} n^2 + \frac{C_{D_0} q}{\frac{W_{loiter}}{S}}\right) \qquad \frac{T_{t_0}}{W_0} \ge \frac{T_{t_0}}{T_{t_{loiter}}} \frac{W_{loiter}}{W_{t_0}} \left(\frac{K}{q} \frac{W_{t_0}}{S} \frac{W_{loiter}}{W_{t_0}} n^2 + \frac{C_{D_0} q}{\frac{W_{t_0}}{S} \frac{W_{loiter}}{W_{t_0}}}\right)$$

 $W = L = \frac{1}{2} \rho V_{STALL}^2 SC_{L_{max}}$

 $\frac{W_{h_1}}{W_{h_2}} = \frac{\frac{1}{2}\rho_{h_1}V_{STALLCLEAN}^2 SC_{L_{max}CLEAN}}{\frac{1}{2}\rho_{h_2}V_{STALL_{CLEAN}}^2 SC_{L_{max}DLEAN}}$

 $V_{STALL_{DIRTY}} = \sqrt{\frac{W_{h_2}}{W_{h_1}}} \frac{\frac{1}{2}\rho_{h_1}V_{STALL_{CLEAN}}^2 SC_{L_{max_{CLEAN}}}}{\frac{1}{2}\rho_{h_2}SC_{L_{max_{DIRTY}}}}$