

Calendario de la Asignatura

Curso 2012/2013

Introducción

Sergio Esteban

sesteban@us.es

Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos

Planificación de la Asignatura 12/13

- Definir 5 áreas de interés:
 - Diseño
 - Aerodinámica.
 - Estabilidad.
 - Estructuras.
 - Propulsión
 - Actuaciones
- Etapas del diseño planificadas con entregas de documentos y presentaciones:
 - Diseño Preliminar (12-03-13)
 - 9 Clases de teoría previas a la revisión.
 - Revisión 2.0 (30-04-13)
 - 8 Clases de teoría previas a la revisión.
 - Revisión 3.0 (29-05-13)
 - 7 Clases de teoría previas a la revisión.
 - Entrega Final (11-06-13).
 - 13 días entre rev. 3.0 y entrega final.

Calendario (Entregas)

Diseño Preliminar

marzo 2013							
lu	ma	mi	ju	vi	sa	do	
				1	2	3	
4	5	6	7	8	9	10	
11	12	13	14	15	16	17	
18	19		21			24	
25	26	27	28	29	30	31	

abril 2013							
lu	ma	mi	ju	vi	sa	do	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30						

Revisión 3.0

mayo 2013 lu do ma sa 12 10 17 18 19 24 25 26 30 31

Entrega Final

Calendario (Sesiones Tutorias)

Diseño Preliminar

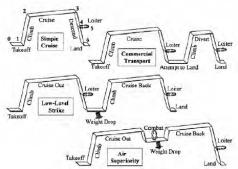
marzo 2013							
lu	ma	mi	ju	vi	sa	do	
				1	2	3	
4	5	6	7	8	9	10	
11	12	13	14	15	16	17	
18	19	20	21	22	23	24	
25	26	27	28	29	30	31	

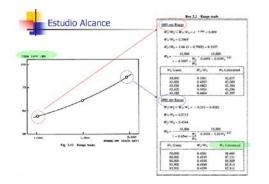
abril 2013							
lu	ma	mi	ju	vi	sa	do	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30						

Revisión 3.0

mayo 2013 do ma sa 18 19 24 25 26 30

Entrega Final





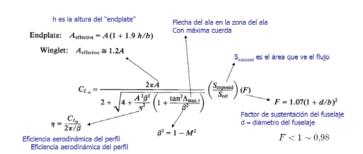
Diseño Preliminar (12-03-13)

- Diseño:
 - Definición de intenciones.
 - Concepto a grandes rasgos: "diseño en servilleta".
- Primeras estimaciones: métodos estadísticos
 - Aerodinámica
 - Dimensionado de L/D
 - Estructuras
 - Dimensionado inicial mediante proceso iterativo
 - Pesos iniciales:
 - Vacío
 - Combustibles por segmentos
 - Carga de pago
 - Actuaciones
 - Definición y estudio de los diferentes segmentos de la misión
 - Estabilidad y Control
 - Dimensionado Superficies

Revisión 2.0 - (30-04-13) - I

Diseño:

- Definir diseño final a grandes rasgos, no necesariamente en CAD en esta primera versión, pero ayudaría.
- No hay marcha atrás. Enseñar todas las cartas.
- Interacción: Aero. Estab., Prop y Actuaciones, Estructuras

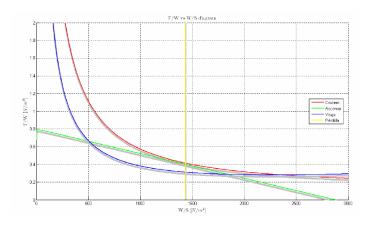

Aerodinámica:

- Selección preliminar de los perfiles para las superficies sustentadoras.
- Definir la precisión en los modelos de polares más exactos.
- Determinación inicial de las características iniciales aerodinámicas.
- Interacción: Estruc. Estab. Actua.

Propulsión y Actuaciones:

- Primera estimación de actuaciones (grandes rasgos).
- Diagrama T/W vs W/S
- Definir planta motora.
- Interacción: Aero, Estruc, Diseño

Revisión 2.0 – (30-04-13) - II

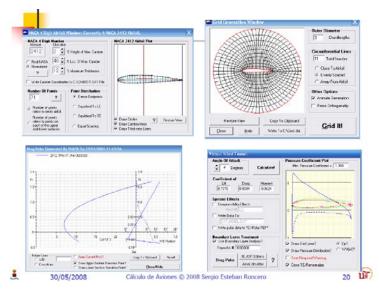

Estabilidad:

- Estudio del trimado:
 - Viabilidad del diseño mediante estudio de trimado.
 - Plantear problemas de configuración y prever solución para rev. 3.
- Inicio de la estabilidad Estática.
- Inicio modelado (derivadas estabilidad).
- Interacción: Diseñom Estruc. Aero.

Estructuras:

- Estudio de masa (fracciones) preliminar para poder proveer estimación centro gravedad.
- Identificar las cargas que actúan en la aeronave en diferentes configuraciones.
- Diseño de estructura preliminar y estudio de ajuste de pesos.
- Interacción: Diseño, actuaciones

Revisión 3.0 – (29-05-13) – I


Diseño:

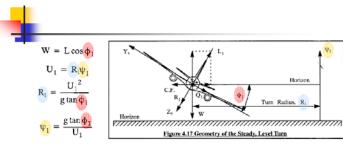
- Diseño CAD mas detallado:
 - Dimensiones mas precisas de todos los componentes
- Mostrar evolución del diseño.
- Definición de sistemas.
- Identificación más realista de pesos interacción estructuras.

Estructuras:

- Definición del centro de gravedad más preciso mediante estimaciones más exactas de los pesos de los componentes.
- Definir necesidades estructurales (refuerzos) debido a las cargas:
 - Aerodinámicas
 - Estructurales.
- Estudio de posibles materiales para definir pesos de forma más precisa.

Revisión 3.0 – (25-05-13) - II

Aerodinámica:


- Selección depurada de los perfiles para superficies sustentadoras.
- Estudio de la polar del avión para las diferentes configuraciones:
 - Despegue y aterrizaje.
 - Subida.
 - Crucero.
 - Espera.

Estabilidad:

- Revisión del estudio de trimado para nuevas configuraciones.
- Estudio de la estabilidad Estática:
 - Determinación de los valores de las derivadas de estabilidad críticas.
 - Determinación de la ubicación, forma, tamaño de las derivas para cumplir situaciones críticas (viento, fallo motor).
- Definición del modelo de estabilidad dinámica:
 - Modelado definido (derivadas de estabilidad).
 - Preparando estudio estabilidad dinámica.

Propulsión y Actuaciones:

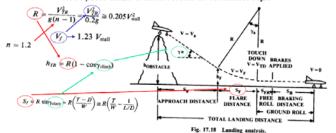
- Estudio en precisión de las actuaciones según segmentos.
 - Ángulos, velocidades, T/W, W/S.
- Cálculos de potencia requerida y necesaria finales.

At this point, the concept of load factor, n is introduced:

$$\begin{array}{c} L=nW\\ \hline\\ O_1=\frac{g\sin^2\varphi_1}{U_1\cos\varphi_1}=\frac{g}{U_1}(n-\frac{1}{n})\\ \\ R_1=\frac{g\sin\varphi_1}{U_1}=\frac{g}{nU_1}\sqrt{n^2-1} \end{array}$$
 and

14/12/2008

Cálculo de Aviones © 2008 Sergio Esteban Roncero



Aterrizaje - 3

Flare: Velocidad de aterrizaje V_{TD}= 1.15V_{STALL}

 V_a is 1.3 V_{stall}

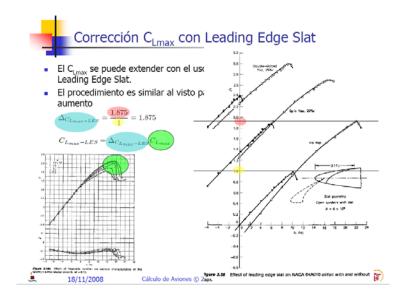
- ullet El avión decelera desde $V_a = hasta \ 1.15 V_{STALL}$ por lo que la velocidad media es $1.23 V_{STALL}$
- Rodadura en pista: después de la toma de contacto el avión rueda durante varios segundos antes que el piloto aplique frenos:
 - Velocidad inicial es V_{TD} y la final es cero.
 - Si hay thrust-reversal, se aproxima con el 40-50% del empuje negativo.
 - · No se puede utilizar el thrust-reversal en velocidades bajas

Cálculo de Aviones © 2008 Sergio Esteban Roncero

Entrega Final - (11-06-16) - I

Diseño:

- Diseño CAD completo.
- Mostrar evolución del diseño.
- Justificación del diseño y por que debería de comprarlo.
- Que avances tecnológicos o que ideas hacen que vuestro diseño sea único.


Aerodinámica:

- Estudio polar extenso en diferentes configuraciones de vuelo:
 - Configuración limpia y sucia.
- Métodos empleados para la mejora de la eficiencia aerodinámica.

Estabilidad:

- Revisión del estudio de trimado para nuevas configuraciones.
- Revisión estudio de la estabilidad Estática.
- Estudio estabilidad dinámica:
 - Requisitos FAR en amortiguamiento, respuestas.

Entrega Final – (11-06-13) - II

Estructuras:

- Revisión centro de gravedad.
- Distribución de pesos revisado.
- Variación del centro de gravedad en segmentos aplicables.
- Cargas y ubicación del tren de aterrizaje.
- Justificar empleo materiales en diferentes áreas.
- Perfiles internos si es posible.

Propulsión y Actuaciones:

- Cálculos de potencia requerida y necesaria.
- Diagrama carga de pago-alcance.
- Diagrama de la envolvente de vuelo.

Actuaciones Integrales – Autonomía I

$$\frac{\mathrm{d}R}{\mathrm{d}W} = \frac{V}{-CT} = \frac{V}{-CD} = \frac{V(L/D)}{-CW}$$

$$R = \int_{w_1}^{w_2} \frac{V(L/D)}{-CW} \, \mathrm{d}W = \frac{V}{C} \frac{L}{D} \ln \left(\frac{W_2}{W_2}\right)$$

Optimizando para Jet - mínimo empuje

$$\frac{T}{W} = \frac{1}{L/D} = \frac{qC_{D_0}}{(W/S)} + \left(\frac{W}{S}\right)\frac{K}{q} \qquad \frac{\partial (T/W)}{\partial V} = \frac{\rho VC_{D_0}}{W/S} - \frac{W}{S} \frac{2K}{V_2 \rho V^2} = 0 \qquad E = \frac{1}{C_t} \frac{L}{D} \ln \frac{W_0}{W_1}$$

$$V_{\substack{\text{mis thrust} \\ \text{of drag}}} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{C_{D_0}}} \qquad \qquad C_{\substack{L_{\min \text{thrust}} \\ \text{of drag}}} = \sqrt{\frac{C_{D_0}}{K}} \qquad \qquad D_{\substack{\text{nin thrust} \\ \text{of drag}}} = qS \bigg[C_{D_0} + K \bigg(\sqrt{\frac{C_{D_0}}{K}} \bigg)^2 \bigg] = qS(C_{D_0} + C_{D_0})$$

Optimizando para Pistón – mínima potencia

$$E = \frac{\eta_{\text{pr}}}{c} \sqrt{2\rho_{\infty} S} \frac{C_L^{3/2}}{C_D} \left(W_1^{-1/2} - W_0^{-1/2} \right) \qquad V_{\substack{\text{min} \\ \text{power}}} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

$$E = \int_{W_1}^{W_0} \frac{\eta_{\text{pr}}}{c} \sqrt{\frac{\rho_{\infty} SC_L}{2W}} \frac{C_L}{C_D} \frac{dW_f}{W} \qquad D_{\substack{\text{min} \\ \text{power}}} = qS(C_{D_0} + 3C_{D_0})$$

$$C_{L_{\substack{\text{min} \\ \text{power}}}} = \sqrt{\frac{3C_{D_0}}{K}} \frac{C_L}{K} \frac{dW_f}{W} \qquad D_{\substack{\text{min} \\ \text{power}}} = qS(C_{D_0} + 3C_{D_0})$$

