Diseño paramétrico de un ala con perfil NACA de 4 dígitos, flecha, diedro, torsión y estrechamiento en Catia V5 R19

Damián Patón Terrero

17 de febrero de 2014

Índice

1.	Importar puntos del perfil mediante Microsoft Excel.	1
2.	Uso de fórmulas y parámetros en Catia	6
3.	Uso del módulo Knowledgeware	12
4.	Uso de Matlab junto con el módulo Knowledgeware. Creación de un perfil NACA simétrico.	14
5.	Parametrización de un perfil cualquiera de la familia NACA de 4 dígitos.	19
6.	Parametrización de un ala con perfil NACA de 4 dígitos, flecha, diedro, torsión y estrechamiento.	24

1. Importar puntos del perfil mediante Microsoft Excel.

Lo primero que necesitaremos será importar los puntos del perfil a "Catia". Para no hacerlo manualmente podemos seguir el siguiente procedimiento:

• Ir a la siguiente dirección: "C:\Program Files (x86)\Dassault Systemes\B19\intel_a\code\command" (o similar según la dirección de la instalación) y buscar y copiar en otra dirección (por ejemplo el escritorio) el siguiente archivo: "GSD_PointSplineLoftFromExcel.xls". Este archivo permite insertar puntos, splines y superficies a "Ca-tia". Las columnas A, B y C se refieren a las coordenadas X, Y, Z del punto. Como se puede ver en la figura 1 hay 3 grupos de puntos, en nuestro con usar un grupo nos basta.

	. .	(° - °) =					GSD_Pc	intSplineL	oftFromExcel [Sólo lectura] [Modo d	e compatibilid	lad] - Microso	oft Excel					-	<mark>∃</mark> ×
	Inicio	Insertar	Diseño d	le página 👘 Fór	mulas	Datos Revisar	Vista												(e) _ = ×
Ê	🔏 Cortar	r	Arial	× 10 ×	A A	= = = >-	📑 Ajustar tex	to	General	•		Normal	Buena	Incorrec	to	*		Σ Autosuma -	27 d	ħ.
Pegar	I Copia	r formato	N K	<u>s</u> - 🖽 - 🔕	- <u>A</u> -		🗉 💽 Combinar	y centrar +	📆 - % 010 🗞 🗳	8 Formato condicional	Dar formato	Neutral	Cálculo	Celda d	e co 👳	Insertar Eliminar	Formato	∠ Borrar *	Ordenar Busi	car y
P	ortapapeles	G		Fuente	G	Alin	neación	G	Número	Gi Condicional	Como tabía	E	stilos			Celdas		N	odificar	Ionar
-		^						^												×
Ac	lvertencia d	le seguridad	Las mac	ros se han desha	bilitado.	Opciones														
	A22	- (9	∫ _∞ End																¥
	А	E	3	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q		R
1 S	tartLoft																			
2 S	tartCurve																			
3		0	-90	10																
4		0	-30	60																
5		0	50	60																
0	odCupio	0	110	20																
1 E	tartCunio																			
0 0	ancuive	50	-60	0																
10		50	-10	40																
11		50	50	40																
12		50	70	0																
13 E	ndCurve																			
14 S	tartCurve																			
15	10	00	-100	-10																
16	10	00	-40	35																
17	10	00	0	50																
18	10	00	75	40																
19	10	00	140	0																
20 E	ndCurve																			
21 E	ndLoft	_																		
22 E	nd	_																		
23																				
25																				
26																				
27																				
28																				
29																				
30																				
31																				
32																				
₩. + •	→ Feui	11 Feuil	Peul	3 /2/				1												

Figura 1: Archivo GSD_PointSplineLoftFromExcel.xls.

• Debemos tener las macros activadas. En la figura 2 podemos ver como nos aparece una advertencia de seguridad, pulsamos opciones y habilitamos las macros.

8	GSD_PointSplineLoftFromExcel [Modo de compatibilidad] - Microsoft Excel																				
Peg	a Cortar Gar Portapapeles	ormato	urial N <i>K</i> (+ 10 2 → (⊞ +) 2 Fuente	• A* A* 3• • <u>A</u> • 5	= = =	i i≢ i≢ Aline	🖶 Ajustar texto	centrar •	neral % 000 % »	Formato condicional	Dar formato • como tabla •	Normal Neutral	Buena Cálculo Estilos	Incorre Celda d	cto	Insertar Eliminar Celdas	Formato	Σ Autosuma - A Rellenar - Z 2 Borrar - Ord y filt Modif	lenar Buscar y rar * seleccionar * ficar	
0	Advertencia de s	seguridad	Las maci	os se han des	habilitado.	Opciones															×
	G9	(f_{x}																	¥
	А	B		С	D		E	F		Opciones	de segurid	ad de Micr	osoft Office	? ×	M	N	0	Р	Q	R	
1	StartLoft										9										
2	StartCurve								<u></u>												
3	0		0	(vierta de segu	uridad - Ma	сго									
4	0		-30	60					Macro												_
5	0		50	60					Las ma	icros se han habilitai	do. Las macros p	ueden contener	virus u otros riesgo	os para la							
6	0		110	20					segurid	lad. No habilite este	contenido a mer	ios que confíe e	n el origen del arch	ivo.							
7	EndCurve								Adver	tencia: no es posi	ble determinar	si el contenid	procede de un	origen de							
8	End confianza. Debe dejar este contenitó deshabilitado a menos que de él dependa cierta funcionalidad básica y confie en su origen.																				
9	cierta funcionalidad bàsica y confie en su origen. <u>Més información</u>																				
10									Ruta de	a acceso del archivo	C:\Users\Dan		D PointSplineLoftEr	omEvcel vie							
11									rutu ut	s acceso del arcinto	. c. (osers (our	indin (besittop (d.5	D_romophilecord r	UnicActions							
12									(Ay	rudar a grotegerme	contra contenido	desconocido (n	ecomendado)								
13									● <u>H</u> a	abilitar este contenid	0										
14																					
15																					=
10																					
10																					
10																					
20																					
21																					
22																					
23									Abrir el Cent	tro de confianza			Aceptar	Cancelar							
24										-		_	_	.31							
25																					
26																					
27																					
28																					
29																					
30																					
31																					
32																					-
H .	()) Fould / Fould / Fould / P																				
Listo																			D III 100% (E		÷

Figura 2: Habilitar Macros.

 Para encontrar los puntos de nuestro perfil podemos acceder a "http://www.airfoiltools.com" donde en la sección "NACA 4 digit airfoils" encontramos gran cantidad de perfiles. En la figura 3 podemos ver un ejemplo de perfil de 4 dígitos. Pulsando en "selig format dat file" obtenemos una lista con las coordenadas adimensionalizadas con la cuerda, es decir, valores de 0 a 1. Esta lista la copiamos y pegamos en el fichero "Excel".

Airfoil Tool Search 1629 airfoils	S 8 Tweet FP	le gusta <mark>- 31</mark> 2		You have 0 airf Your Reynold n Google" Custon	oils loaded. umber range is 50,00 • Search	0 to 1,000,000. (set) Search
Applications Airfoil database search My airfoils Airfoil joitter Airfoil comparison Reynolds number calc NACA 4 digit generator INACA 5 digit generator Information Airfoil data Liftidrag polars	NACA 2.5411 NACA 2.5411 - NA	(naca241 CA 2411 air	l 1-il) rfoil			
Generated airfolis shapes Searches Symmetrical airfolis NACA 4 digit airfolis NACA 5 digit airfolis NACA 5 series airfolis Airfolis A to Z A s18 to avistar (08) B 629red to bv/3 (22) C c161s to cuttar 27 (40) C c161s to cuttar 27 (40)	Details (naca241-1-) NACA 2.5411 NACA 2411 artoll Max hichness 11% et 25 % chor Max camber 2.5% et 30 9% chord Source of dif Source of dif Source fait is in Selig format	Da	At file NACA 2.5411 1.00000 0.00000 0.99730 0.00059 0.98518 0.00235 0.97578 0.00520 0.95720 0.00906	Parser No parser warning	s <u>Seno</u> Add León Selo	d to airfoil plotter to comparison lineer format dat file a format dat file
D def (1 to date) 12/2 (ac) E e1050 exe4/2 (26) G generation to guides 116 (415) H to M22 (ac) Let (216) I to M22 (ac) Let (216) H to M25 (ac) Let (216) J p 6 forder to p401 (6) R r1048 to modes/a) S a 1010 to partments/711	Similar airfo DF 101 ARFOL E205 (10.45%) K01 50-1.010 K R01 54-1.071.0 A016 NACA CYH E220 (11.45%) K3311 (smoothed) K3311 (smoothed) FT40	ls 	Preview Details Preview Details Preview Details Preview Details Preview Details Preview Details Preview Details Preview Details Preview Details			
T tempest1 to tsagi6 (8) U ua2 to usnps4 (36) V v13006 to vr9 (17) W waspsm to whitcomb (4) Y vs900 to ys930 (3)	Polars for NACA 2 Plot Airfoil Plot Airfoil naca2411-8 naca2411-8	5411 (naca Reynolds # 50,000 50,000	2411-il) Norit Max CI/Cd 9 34.3 at c=7.75 5 35.9 at c=6.75	Description Mach=0 Norit Mach=0 Norit	9 Xfoil prediction 5 Xfoil prediction	<u>Detais</u> Detais
Lone Contact Privacy Policy	naca2411-i naca2411-i naca2411-i	100,000 100,000 200,000	9 52.9 at 0=6.75 5 52.2 at 0=5.75 9 71.2 at 0=5.75	Mach=0 Norit= Mach=0 Norit= Mach=0 Norit=	9 Xfoil prediction 5 Xfoil prediction 9 Xfoil prediction	Details Details Details

Figura 3: www.airfoiltools.com

• Como puede verse en la imagen 4 los puntos se pegan en una misma columna y necesitamos que cada coordenada se encuentre en una columna distinta. Para solucionar esto seleccionamos los datos de la primera columna y vamos a la pestaña de "Datos" en "Excel" y seleccionamos "Texto en columnas". Nos aparecerá la ventana que aparece en la figura 5, le damos a siguiente y nos aparecerá la ventana de la figura 6, donde seleccionamos "Espacio" como tipo de separador y pulsamos finalizar. Completamos la columna C con ceros.

(9	• • •);	;					GSD_Po	intSpline	LoftFromExce	el [Só	lo lectura] [Modo d	e compatibilic	dad] - Microso	oft Excel					-	□ ×	
		Inicio	Insertar	Diseñ	o de página	Fórmulas	Datos	Revisar	Vista														0	×
	R	🔏 Corta	ar	Arial	- 10	• A A	= =	= %	📑 Aiustar tex	to	General				Normal	Buena	Incorre	to	· 🖚 🐄		Σ Autosuma -	A7	A	
		Copia Copia	ar									0 00	Laga Cormoto	Dar formato	Mandaal	Cálaula	Calife d		Incortor Elimina	r Formata	🛃 Rellenar *	Crdenar Pi		
1	- -	🝼 Copia	ar formato	N K	§ • 🖽 •		= =	= = =	Combinar	/ centrar +		00 - 0	condicional	 como tabla * 	iveutrai	Calculo	Celda d	e co 🔻	* *	*	Ø Borrar *	y filtrar * sele	ccionar *	
	Po	tapapele	is G		Fuente	G		Aline	eación	G	Número	Gi			E	Estilos			Celda	s	1	Modificar		
		19	•	(•	f _x																			¥
	4	А		В	С	D		E	F	G	Н		1	J	К	L	М	N	0	F	· (2	R	Ē
1	Sta	rtLoft																						Π
2	Sta	rtCurve	0.00000	0																				
	1.0	007200	0.00000	0																				
4	0	000100	0.0005	30 50																				
6	0	075790	0.00230	0																				
7	0	957200	0.00020	30																				
8	0	933650	0.0138	00																				
c	0	905350	0.0192	70										1										
1	0 0	872600	0.02532	20								-		1										
1	1 0	835770	0.0317	50																				
1	2 0	795200	0.03839	90																				
1	3 0	751380	0.04506	60																				
1	4 0	704750	0.05158	30																				
1	5 0	655830	0.05777	70																				
1)	6 0	605130	0.06347	70																				
1	7 0	553220	0.06852	20																				
1	B 0.	500670	0.07276	60																				
1	9 0	448070	0.07606	50																				
2	0 0	395970	0.07830	00																				
2	1 0	344550	0.07912	20																				
2	2 0	294850	0.0783	10																				
2	3 0	247450	0.07588	30																				
2	4 0	202920	0.0719	30																				
2		101/00	0.00005	90 20																				
2	5 U	124480	0.06000	00																				
2		081400	0.0525	70																				
2		030850	0.04421	20																				
2	0	021700	0.0300	10																				
3	1 0	008970	0.0175	20																				-
H	• •	Feu Feu	il1 Feu	iŽ / Fe	ui3 🧷											(н				► I	
1.1	to																						(III) (5

Figura 4: Puntos en fichero Excel.

GSD_PointSplineLoftFromExcel [Modo de compatibilidad] - Microsoft Excel 🗕 🗖 🔀												
Inicio Insertar Diseño de página Fórmulas Datos Revis	sar Vista	🛞 _ 🗇 X										
2 Conexiones 2	↓ DE Y K. Borrar E F III III III III III III III III III											
Desde Desde De otras Conexiones Actualizar a Editar vínculos	Ordenar Filtro Validación Consolidar Análísis Agrupar Desagrupar Subtotal											
Obtener datos externos Conexiones	Ordenar y filtrar Herramientas de datos Esquema 🕫											
A3 - fx 1.000000 0.000000		×										
A B C D F	F G H I J K I M N											
1 StartLoft												
2 StartCurve	Asistente para convertir texto en columnas - paso 1 de 3 ? 🛛 🗙											
3 1.000000 0.000000	El acidante actima que sus dates son Delimitados											
4 0.997300 0 000590	Li daskente estimiti que sus deuxes son perminados.											
5 0.989180 0.002350	area de consciu, enja aguiente, o une enja er upo de datos que inejor los descritos.											
6 0.975780 0.005200	nipo de los datos originales											
7 0.957200 0 009060	O Delimitados											
8 0.933650 0 013800	De ancho fijo - Los campos están alineados en columnas con espacios entre uno y otro.											
9 0.905350 0 019270												
10 0.872600 0 025320												
11 0.835770 0031750												
12 0.795200 0 038390	Victa acoula de los datos relescionados:											
13 0.751380 0 045060												
14 0.704750 0.051580	3 1.000000 0.000000 ^											
15 0.655830 0057770	5 0.989180 0.002350											
16 0.605130 0.063470	6 0.975780 0.005200 7 0.957200 0.009060											
17 0.553220 0068520	■ 0.933650 0.013800											
18 0.500670 0072760												
19 0.448070 0076060	Cancelar < Atrás Siguiente > Einalizar											
20 0.395970 0078300												
21 0.344550 00/9120												
22 0.294850 0078310												
24 0.202920 0071930												
27 0.001490 005050												
28 0.063170 0.044270												
20 0.000110 0044270												
20 0.03500 003530												
31 0.008970 0.017520												
H ← → → Feuil1 / Feuil2 / Feuil3 / 💭		n										

Figura 5: Texto en columnas1

P	Image: Sector of the sector													- 🖬 ×					
De	isde Desde D cess Web t	Desde De otras texto fuentes	Conexiones existentes	Actualizar todo - Conexi	conexiones ropiedades ditar vínculos	2↓ 2 Z↓ Orde	nar Filtro	≪ Borrar & Volver a aplicar ✔ Avanzadas filtrar	Texto en o columnas du	Quitar Validació plicados de datos Herramientas di	n Consolidar Análisis Y Si Y	Agrupar Des	agrupar Subtota						
	Δ3	- (a	fr 1	000000 0.00	0000				1										×
	Δ	B	C	.000000 0.00		F	F	G	н	1		к		м	N	0	P	0	R
1 2 3	StartLoft StartCurve 1.000000	0.000000	U U			Eeta	Asi	stente para co	onvertir tex	to en colum	nas - paso 2 de	3 ? ×		IVI	IN	0		v.	
4 5 6	0.997300 0.989180 0.975780	0 000590 0 002350 0 005200				en la Sep	vista previa. aradores Tabulación	inte establiccer itos s	eparadores com		s. Se puede ver como								
7 8 9	0.957200 0.933650 0.905350	0 009060 0 013800 0 019270					Punto y coma Coma Espacio	Considerar Calificador de t	separadores co regto: "	nsecutivos como u	v solo								=
10 11 12	0.872600 0.835770 0.795200	0 025320 0 031750 0 038390				Vist	Spacial Contraction of the tagent in the space of tagent i												
13 14 15 16	0.751380 0.704750 0.655830 0.605130	0.045060 0.051580 0.057770 0.063470				ſ	1.00000 0.997300 0.989180 0.975780	0.000000 0.000590 0.002350 0.005200				^							
17 18 19	0.553220 0.500670 0.448070	0 068520 0 072760 0 076060				<	0.957200 0.933650	0.009060 0.013800				>							
20 21 22	0.395970 0.344550 0.294850	0 078300 0 079120 0 078310							Cancelar	< Atrás	Siguiente >	Einalizar							
23 24 25	0.247450 0.202920 0.161750	0 075880 0 071930 0 066590																	
26 27 28	0.124480 0.091480 0.063170	0 060060 0 052530 0 044270																	
29 30 31	0.039850 0.021700 0.008970	0 035530 0 026540 0 017520	Chuc									1 -4							
List	o Feur	III / Feulz / I	eul3 / (J)													Recuer	ito: 61 🔲 🗌	I 100% 🕞	

Figura 6: Texto en columnas 2

• Por último necesitamos cambiar los puntos por comas, ya que "Excel" tiene como separador decimal la coma. Para eso seleccionamos todos los puntos y en la pestaña "Inicio" de "Excel" marcamos la opción "Reemplazar" como puede verse en la figura 7. En la ventana que nos aparece, en "Buscar" introducimos un punto y en "Reemplazar con" introducimos una coma, como puede verse en la figura 8, pulsamos "Reemplazar todos" y todos los puntos serán sustituidos por comas.

GSD_PointSplineLoftFromExcel [Modo de compatibilidad] - Microsoft Excel 🗕 🗖 💌														_ 🗇 ×						
	Inicio	Insertar	Diseño	de página 👘 Fó	órmulas	Datos Revisar	Vista													() _ = ×
ľ	🖁 🔏 Cortar		Arial	- 10 -	A A	= = = >>-	📑 Ajustar text	to	Número	-		Normal	Buena	Incorrec	to	1		Σ Autosuma	Ż	7 <u>A</u>
Peg	gar 🛷 Copiar	formato	N K	<u>s</u> · 🖽 · 👌	• <u>A</u> •		Combinar 🔛	/ centrar +	🥶 v 🕺 👬	condicional	 como tabla * 	Neutral	Calculo	Celda d	e co 🔻	insertar Eliminar	Formato	2 Borrar *	y filt	ar * seleccionar *
	Portapapeles	G		Fuente	G	Alin	eación	G	Número	6		E	stilos			Celdas			<i>8</i> 8	Buscar
	A3	- (9	<i>f</i> _x 100000	00														ab Hat	Reemplazar
4	А		B	С	D	E	F	G	Н	- I	J	К	L	М	N	0	P		-	ra
1	StartLoft																		-	r a Especial
2	StartCurve																		- 1	Fórmulas
3	1.000.00	0.0000	000	0															-	Comentarias
4	0.997300	0.000	250	0															-	Comentarios
6	0.969160	0.002	200	0																Formato condicional
7	0.957200	0.0090	060	0															1	<u>C</u> onstantes
8	0.933650	0.0138	800	0																Validación de datos
9	0.905350	0.0192	270	0															R	Seleccionar <u>o</u> bjetos
10	0.872600	0.0253	320	0															B \$	Panel de selección
11	0.835770	0.031	750	0																
12	0.795200	0.0383	390	0																
13	0.751380	0.0450	060	0																
14	0.704750	0.051	580 770	0																
16	0.000000	0.057	470	0																
17	0.553220	0.068	520	0																
18	0.500670	0.072	760	0																
19	0.448070	0.0760	060	0																
20	0.395970	0.0783	300	0																
21	0.344550	0.0791	120	0																
22	0.294850	0.0783	310	0																
23	0.247450	0.0758	880	0																
24	0.202920	0.0719	930	0																
20	0.101750	0.000	090 060	0																
27	0.091480	0.0525	530	0																
28	0.063170	0.0442	270	0																
29	0.039850	0.0355	530	0																
30	0.021700	0.0265	540	0																
31	0.008970	0.0175	520	0																
32	0.001720	0.0086	620	0																
33	0.000000	0.000	000	0																
34	0.003750	-0.007	940	0																
14	► ► Feui	11 Feui	2 / Feui	13 ⁄ 🖓 🖉									(

Figura 7: Reemplazar 1.

-	GSD_PointSplineLoftFromExcel [Modo de compatibilidad] - Microsoft Excel 🗕 🗖 🗾																	
Inicio	Insertar Dis	eño de página	Fórmulas	Datos Revis	ar Vista													<u> </u>
📇 🔏 Cortar	Arial	- 10	* A* *	= = =	🗞 - 📑 Aius	tar texto	Número				Normal	Buena	Incorrec	to	Ten 📪		Σ Autosuma - A	<i>(</i> 3)
Copiar									Formato	Dar formato	Noutral	Céleule	Caldad	-	Incortor Eliminor	Formato	Rellenar - Au	Purchar M
🗸 🍼 Copiar	formato	K § • 🖽 •			F F Con	ibinar y centrar *	- % 000	00 -0	condicional	* como tabla *	Neutral	Calculo	Celua di	e co 🟹	* *	*	2 Borrar * y filtrar	* seleccionar *
Portapapeles	6	Fuente	G		Alineación	6	Número	5			E	Estilos			Celdas		Modifica	r 🔤
A3	• (•	<i>f</i> _x 100	0000															
A	В	С	D	E	F	G	Н		1	J	K	L	М	N	0	Р	Q	R
1 StartLoft																		
2 StartCurve	0 0 000000		0															
4 0 997300	0.000590		0															
5 0 989180	0.002350		0															
6 0.975780	0.005200		0															
7 0.957200	0.009060		0															
8 0.933650	0.013800		0				Buscar	v reem	plazar		? ×							
9 0.905350	0.019270		0					1										
10 0.872600	0.025320		0		Buscar	Reemplazar						L						
11 0.835770	0.031750		0		Buscar:						~							
12 0.795200	0.036390		0		Deservice							L						
14 0 704750	0.043000		0		Reempiaz	ar con:					•							
15 0.655830	0.057770		0								Ogciones >>							
16 0.605130	0.063470		0															
17 0.553220	0.068520		0		Reemplaz	ar todos Ree	mplazar	Buscar t <u>o</u> do	s Buscz	r <u>s</u> iguiente	Cerrar							
18 0.500670	0.072760		0															
19 0.448070	0.076060		0															
20 0.395970	0.078300		0															
21 0.344550	0.079120		0															
22 0.294650	0.075880		0															
24 0 202920	0.071930		0															
25 0.161750	0.066590		0															
26 0.124480	0.060060		0															
27 0.091480	0.052530		0															
28 0.063170	0.044270		0															
29 0.039850	0.035530		0															
30 0.021700	0.026540		0															
31 0.008970	0.017520		0															
32 0.001720	0.008620		0															
34 0.003750	-0.007940		0															
35 0.012900	-0.014830		0															
I I I Feuil	1 / Feui2 /	FeuiB 🖉										C	_	_		_		
Listo													Promedio: 31.	746 Recuent	o: 183 Suma: 2.0	00.000	🔲 💾 100% 🕞 —	U

Figura 8: Reemplazar 2.

- Abrimos "Catia" y creamos un nuevo "Part". Es importante que hagamos esto antes de seguir.
- Una vez tenemos los puntos en "Excel" y un nuevo "Part" de Catia abierto pulsamos Alt + F8. En la ventana emergente seleccionamos la opción "Feuil1.Main" y pulsamos ejecutar. En la nueva ventana emergente podemos

introducir 1 para representar los puntos, 2 para los puntos y los splines y 3 para los puntos, los splines y las superficies. En nuestro caso introducimos 1 y pulsamos aceptar.

El resultado es una serie de puntos en el espacio en 3D, para pasarlos a un "sketch" que es donde se puede trabajar bien con ellos simplemente podemos crear un "sketch" y proyectar los puntos en el mismo. Una vez hecho esto en las opciones del "sketch" podemos marcar "Isolate" para desvincular este de los puntos importados y poder trabajar con el "sketch" que era lo que buscábamos. En la figura 9 podemos ver el resultado.

8	CATIA V5 - [Part1.CATPart]	– 🗆 ×
Start ENOVIA V5 VPM File Edit View Insert Tools Window		_ 8 ×
Parti y plane y z plane y z plane y z plane y s plane y z plane y z plane y z plane y z plane y s s s s s s s s s s s s s s s s s s s		▲ 「衆也」留録」▲ 「龍田の沼藤」~~× 今星」×× ◇ふい」もぬせく × 」星来星
		Ĺ Ő
ା 🗅 🗃 🖬 🖨 🎗 🖻 🖻 🔊 ୍ୟୁ 🖌 👘 🎯 ା 🔳 🙀 🖗 👫 ା 🏍 💀	╡┿╘╕╲ ╲╧╫╢╢╔╔╔ ╵╵⋟┋╔╔Ҩ╵╧ ╡╵ ╠ <i>╋┇</i> ┋ ╬╬	DS
Select an object or a command		<u> </u>

Figura 9: Puntos en sketch.

El archivo de "Excel" usado en este ejemplo está adjunto al documento.

2. Uso de fórmulas y parámetros en Catia

Los parámetros en "Catia" son una útil herramienta. Creando parámetros para las variables importantes y asociándolos a las "Constraint" podemos ahorrarnos mucho trabajo, ya que cualquier cambio puede introducirse en el diseño con sólo modificar dicho parámetro.

Lo primero que haremos será configurar "Catia" para que podamos visualizar y usar los parámetros:

Dentro de "Catia" vamos a "Tools" y después a "Options". En el menú de la izquierda desplegamos "Infrastructure" y seleccionamos "Product Structure". Vamos a la pestaña "Tree Customization" y activamos los parámetros y las relaciones. Esto lo hacemos para poder mostrar parámetros dentro de un "Product" y no solo dentro de un "Part" ya que a veces hace falta parametrizar elementos que están fuera de un "Part" como por ejemplo una "Constraint" de un "Product", aunque para este ejemplo no será necesario, a la hora de hacer un avión completo viene bien poder hacer este tipo de parametrizaciones. En la figura 10 podemos ver la configuración adecuada.

		Options	? ×
	Options	Product Visualization Reconciliation Tree Customization	• •
	🗝 🐖 General	Specification Tree Order	
	- 🗑 Display	Specification Tree Node Name Activated Up	
	Compatibility	Products Node Down Representations	
	Parameters and Meas	Material Yes Deactivate	
	L Devices and Virtual R	Parameters Yes Relations Yes	
•	Infrastructure	Constraints Yes	
	- Product Structure	Publications Others	
	- 🏭 Material Library	Applications Yes	
	- 🚮 Catalog Editor		
	- 🔂 Photo Studio		
	- 🖳 Real Time Rendering		
	🗕 🚳 Part Infrastructure		
V	DELMIA Infrastructur		
J ai	14		
		• ок	Cancel

Figura 10: Configuración "Tree Customization"

• En la ventana de "Options" ahora seleccionamos "Part Infrastructure". En la pestaña "General" nos aseguramos que esté marcada la opción "Show newly created external references". Esto sirve para poder usar parámetros de un "Part" en otro "Part" distinto, los parámetros de este tipo aparecerán en el árbol como "External Parameters". Para este ejemplo tampoco será necesario usar esta funcionalidad, pero al igual que antes, para el diseño de un avión completo resulta de gran utilidad. En la pestaña "Display" nos aseguramos que estén marcadas las opciones "External References", "Parameters" y "Relations". Esto se hace para poder ver los parámetros en la pantalla y así poder modificarlos, pero si queremos ver el valor actual y la fórmula que los definen tenemos que desplegar el menú "General" en la ventana "Options", seleccionar "Parameters and Measure" y en la pestaña "Knowledge" nos aseguramos que estén marcadas las opciones "With value" y "With formula". En las figuras 11 y 12 podemos ver la configuración adecuada.

Figura 11: Configuración "Part Infrastructure"

Figura 12: Configuración "Parameters and Measure"

Una vez tenemos configurado correctamente "Catia" vamos a hacer un pequeño ejemplo de cómo usar los parámetros con ayuda de las fórmulas.

- Creamos un nuevo "Part".
- Pulsamos sobre el símbolo de "Formulas" que tiene la forma de una función f(x). En la ventana emergente vamos a crear un nuevo parámetro, seleccionamos "Length", "Single Value" y pulsamos "New Parameter of type", una vez hecho esto le ponemos el nombre que queramos y pulsamos "Apply" y "OK", es importante seguir este orden a la hora de crear un parámetro. En el árbol podemos ver que se ha creado una sección llamada "Parameters" donde se encontrarán los parámetros que creemos. En la figura 13 podemos ver la ventana de creación de parámetros.

8	CATIA V5 - [10.CATPart]	_ 🗆 ×
Start ENOVIA V5 VPM File Edit View Insert Tools Window Help		_ 8 ×
] 🍖 🖀 🖓 😥 👪		
😥 Ejemplo		
y plane		<u>k</u>
yz plane		
- 🖛 zx plane		
Prameters		, , , , , , , , , , , , , , , , , , ,
Length.1=0mm		
+- 🗱 PartBody		
	Formulas: Ejemplo	? × 🔂 🔂
	XE	Import 1 III #
	Eliter On Elemente	
	Filter Name :	
	Filter Type : All	- -
	Double click on a parameter to edit it	
	Parameter Value Formula PartBoch/Sketch 1\Length 9\Activity to true	Active A
	'Ejemplo\Part Number' Ejemplo	
	Ejemplo\Nomenclature	💼 🙆 👩
	Ejemplo/Revision	
	Ejemplo\Definition	
	Length.1 Omm	× 🚷 😪
	Edit name or value of the current parameter	
	parametro1 0mm	
	New Perspectra of Area Laurah	Add Ferry de 1
	with single value	Add Formula
	Delete Parameter	Delete Formula
		Cancer
👼 ! @ 🕐 그 🐘 🛃 🎭 🗄 @ PartBody 🔄 ! 🌶 🕅 🔀 💈 ! 🔌 🎘 ! 🗋 🗃 🖬 🖨) X E 🕼 🔊 (W 76 🕲) 🔳 📲 🖷 🖗 🐎 N 🔂 🕂 😂 🕑 🖉 💭 📮 🛄 🚺 🚺	
Edit Parameters and Formulas		E S

Figura 13: Creación de parámetros.

• Usaremos el parámetro en una "Constraint" de un "Sketch" para parametrizar un rectángulo. Creamos un "Sketch" y dibujamos un rectángulo, lo acotamos y asociamos el parámetro a una de las "Constraint", esto se hace pulsando dos veces sobre ella, pulsando con el secundario sobre el valor y seleccionando "Edit formula". En la figura 14 se puede ver como acceder a la opción "Edit formula".

Figura 14: Editar fórmula asociada a una "Constraint".

• En la ventana emergente podemos ver que aparece "PartBody\Sketch.1\Length.5\Length" y a continuación un igual y un cuadro en blanco. Esto quiere decir que la "Constraint" 5 del "Sketch" 1 del "PartBody" será igual a lo que nosotros introduzcamos en en el recuadro en blanco. De este modo si pulsamos ahora sobre el parámetro del árbol o escribimos su nombre esta cota tomará el valor del parámetro. Vemos como en la cota aparece un símbolo que indica que la cota viene definida por una fórmula. En la figura 15 podemos ver la ventana donde podemos editar la fórmula que definirá la "Constraint".

Figura 15: Asociación de un parámetro a una "Constraint".

• Añadir una fórmula a una "Constraint" se puede usar de muchas formas, no solo usando parámetros. Por ejemplo, si queremos que el rectángulo esté centrado en el origen podemos editar las "Constraint" que lo ligan al origen definiendo una fórmula para ellas que sea la mitad del largo de los lados. Simplemente en el recuadro en blando de la ventana de edición de la fórmula pulsamos sobre la "Constraint" que acota uno de los lados y la dividimos entre 2. De esta manera se pueden añadir fórmula de cualquier tipo para definir una cota. En la figura 16 se puede ver como se ha realizado este proceso. En la imagen, debajo de la sección de parámetros, en el árbol, podemos observar que se ha creado una nueva sección llamada "Relations" donde aparecerán todas las fórmulas que definamos.

N				C/	ATIA V5 - [10.CATPart]				_ 🗇 🗙
Start	ENOVIA V5 VPM Eile E	dit <u>V</u> iew <u>I</u> nsert <u>T</u> ools	s <u>W</u> indow <u>H</u> elp						- 8 ×
1 × 🗞 🖻	' 🚵 🖓 🖸 🕺 🏢 🏙 😥 '	※ 日	65	□ 0 2 0 / I ·	11274	OARJSS		ାରତ୍ର ପ୍ର ଜୁଡ଼ା ମ	. a ∕X⊥
🔊 Ejemp	0							∳ Z	
xy	plane							\sim	
- 🛩 yz	plane								₹° Ш 2
- <u>-</u> zx	plane								y 🚽 🎽 👸
📥 🔒 Pa	rameters								102
L 6 7	parametro1=100mm								-
🕂 🕌 Re	lations								hê.
÷-🌮 🎦	rtBody			Lec100	•>				
					ength.5/Sketch.1/PartBody				Ξī
ļ						-			<u>U</u>
					N				71
									Ξ.
									-
				49,349_00					6
	Form	ula Editor : PartBody\Sk	retch 1\Offset 6\Offset	? ×					6
	,	fulla Editor . Fullbody (5k	(cicili i (onsello (onsel						
	5 %			<u> </u>	н 🗸				
	PartBody\Sketch.1\Offset.6\C)ffset	=						-
	PartBody\Sketch.1\Length.5\	Length /2							×
	Parameters A	All	PartBody/Sketch.1\Length.5\L	ength					*
	Design Table	Renamed parameters	PartBody\Sketch.1\Length.5\N	lode					0
	Operators Pointer on value functions	Length CstAttr Mode	PartBody\Sketch.1\Length.5\A	ctivity					Ö +
	Point Constructors	Boolean			M				
	Law Operations Constructors								
	Line Constructors								uju db
	PartBody\Sketch.1\Length.5\	Length	100mm	- Fa					uin →
	1								
			<u> </u>	OK Cancel					- í Ó
' 🔟 📛	🗖 🖶 X 🗄 🖬 🔊 🐼	🕷 👫 🛄 🛛 🔍 ext 🖓) III - 19 🖓 🔂 🕂 🕀 🗐 🍕 C	v 7 🖽 🖬 🖉 🖉 🖉	- 🔁 🗟 🤹 🦌	🖮 🖷 - 🖓 🕾 🔒 🧕	14149		DATIA
2 element	ts preselected								9 (9)

Figura 16: Edición de la fórmula que definirá la cota.

 Podemos hacer un "Pad" para ver como cambia la geometría según el valor del parámetro. En las figuras 17 y 18 podemos ver esta variación. Podemos apreciar que aunque cambiemos el valor del parámetro el "Pad" siempre está centrado en el origen de coordenadas como pretendíamos.

Figura 17: Valor de parametro1 100mm.

Figura 18: Valor de parametro1 10mm.

3. Uso del módulo Knowledgeware

Vamos a usar este módulo para crear una lógica sobre una geometría. Vamos a partir del ejemplo anterior, solo que vamos a añadirle un círculo al dibujo para que la figura aparezca con un agujero. Si el agujero tiene una geometría fija habrá valores del parámetro para los cuales se produzca un error. Por ejemplo, si el agujero lo creamos con un diámetro de 80 mm y nuestro parámetro (uno de los lados del rectángulo) toma un valor de 100 mm no habrá ningún problema. Sin embargo, si ahora cambiamos el valor del parámetro a 50 mm el agujero intersectará al rectángulo y "Catia" no podrá crear la geometría. Este es un caso muy simple, pero que sirve para ver la utilidad del módulo "Knowledgeware". Lo que haremos para solucionar este problema será crear un algoritmo que establezca lo siguiente: si el largo del rectángulo es menor que el alto, entonces el radio del círculo es 0.8 veces el largo entre 2 y por el contrario si el alto es menor que el largo entonces, el radio es 0.8 veces el alto entre 2. Lo que estamos haciendo básicamente es que el diámetro del agujero sea el 80 % del menor de los lados, con esto nos aseguramos de que no se producirá una intersección en el "Sketch". Esto se parece bastante a una lógica de programación del estilo if else y es precisamente lo que vamos a hacer mediante el módulo "Knowledgeware".

- Partiendo del ejemplo anterior una vez hecho el círculo en el Sketch, en la barra de herramientas superior pulsamos "Start", "Knowledgeware" y "Knowledge Advisor".
- En la barra de la derecha pulsamos "Rule". En la ventana emergente podemos cambiar el nombre que le vamos a asociar a la regla y posteriormente pulsamos "OK".
- Nos aparece una nueva ventana en la que podremos introducir la programación que queramos. La línea que debemos introducir es la siguiente y depende del orden en el que se crearan las "Constraint":

Donde PartBody | Pad. 1 | Sketch. 1 | Length. 5 | Length es el largo del rectángulo, PartBody | Pad. 1 | Sketch. 1 | Length. 9 | Length es el alto y PartBody | Pad. 1 | Sketch. 1 | Radius. 10 | Radius es el radio de la circunferencia. Las cotas se pueden introducir en el cuadro de programación escribiendo su nombre o más fácilmente haciendo doble click sobre el "Sketch" y después sobre la cota que se quiera introducir. En la figura 19 podemos ver el cuadro de programación. Además podemos ver que la "Rule se añade al árbol dentro de la sección de "Relations", haciendo click sobre ella dos veces podemos editarla cuando queramos.

	CATIA V5 - [10.CATPart]	_ 🗖 🗡
Start ENOVIA V5 VPM <u>File Edit View I</u> nsert <u>T</u> ools <u>W</u> indow <u>H</u> elp		- 8 ×
🐲 Ejemplo		P ^Z
- 🖛 xy plane		
🗕 🚄 yz plane		
- 🛫 zx plane	La construction de la constructi	<u>l</u> , Ma
Parameters	l j	
srametro 1 = 100mm		
Relations		
T(x) Formula.1: PartBody\Pad.1\Sketch.1\Length.5\Length=parametro1	2	× 1
T(x) Formula.2: PartBody\Pad.1\Sketch.1\Offset.6\Offset=PartBody\Pad.1\Sketch.1\Length.5\Length./2	Rule Editor : Rule.1 Active •	
JM Formula.3: PartBody\Pad.1\Sketch.1\Offset.8\Offset=PartBody\Pad.1\Sketch.1\Length.9\Length./2	Internet I	۵ 🖉
	/*Rule created by Damián 15/02/2014*/	~
+ 7 Part 1	if PartBody\Pad.1\Sketch.1\Length.5\Length < PartBody\Pad.1\Sketch.1\Length.9\Length PartBod	Jy∖Pa
	C Dictionary Members of Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters C OK Apply C	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩
┃ _ @ ₽ ₽ ₽ ₩ ₽ ₩ ∞ ₩ 160 Ø : ■ 43 Ø ₽ ₩ ₩ ₩ ⊕ ₽ € ↓ ₽ 🗗 🗊		D'S CATIA
Rule edition		ା ରା

Figura 19: Editor de la "Rule".

Ahora podemos cambiar el valor del parámetro y ver como el agujero cambia para tener un diámetro igual al 80% del menor de los lados, como puede verse en las figuras 20 y 21.

Figura 20: Representación para parametro 1 ${=}10.$

Figura 21: Representación para parametro1=400.

El archivo de "Catia" usado en los ejemplos de las secciones 2 y 3 está adjunto al documento.

4. Uso de Matlab junto con el módulo Knowledgeware. Creación de un perfil NACA simétrico.

A la hora de crear un perfil en "Catia" tenemos que usar una gran cantidad de cotas, ya que cada punto del perfil tendrá dos cotas, una en longitud y otra en altura. Veamos un ejemplo. En el caso de un perfil simétrico, podemos introducir los puntos como vimos en la sección 1 de este documento, introduciremos solo la mitad del perfil y la otra mitad la crearemos mediante simetría (el punto del origen de coordenadas lo hemos eliminado de la lista, ya que usaremos el propio origen del "Sketch"). El primer paso que debemos realizar para parametrizar el perfil es acotar todos los puntos en longitud y altura y adimensionalizarlos con la cuerda y con el espesor respectivamente, de manera que cuando estos cambien, todos los puntos cambien. Esto se hace primero creando los parámetros cuerda y espesor y a continuación a cada una de las cotas de los puntos asociarles una fórmula (en función del punto) como puede verse en la figura 22. Esta fórmula no es más que la distancia a la que se encuentra el punto en el estado inicial, dividida por la cuerda en ese estado inicial y multiplicada por la cuerda que tendrá finalmente. Esto es para las cotas en longitud, para las cotas en altura la fórmula será la altura a la que se encuentra el punto en el estado inicial, dividida por el espesor en ese estado inicial y multiplicada por el espesor que tendrá finalmente.

8	CATIA V5 - [Simetrico]	- 🗇 🗡
Start ENOVIA V5 VPM <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>Insert</u> <u>T</u> ools <u>W</u> indow <u>H</u> elp		- 8 ×
ୁକୁ ଅଭାଷ ା ∰∰ ଏଡ଼ <mark>୬ ୮</mark> ୦୦ ଏଠି ∖ ା	・ ¹ /%X装在101KU1%ぐ1口◇4回⊘80車@1009約6@61・	a CX+
Simetrico xy plane xy p	× *	1 朱 白 1 銅絲 1 公 1 唐 丘 《 75
+ s Antody + s Ketch 3		<u>i</u>);
Formula Editor : PartBody\Sketch.3\Offset.63\Offset ? PartBody\Sketch.3\Offset.63\Offset = PartBody\Sketch.3\Offset.63\Offset = PartBody\Sketch.3\Offset.63\Offset = Dictionary Members of Parameters PartBody\Sketch.3\Offset = Dictionary Members of Parameters Point Constructors Parameters Deparations Constructors Parameters Une Constructors 3000mm Operations Constructors 3000mm		- (c x 書 n x x 0 ふ 0 音音 1 0 0 0 0
, 🗋 🚍 🕅 🖶 🔊 🖬 🔊 🔊 🕅 🖑 🕲 🕯 🖬 📢 🕲 👘 🔊 🖉 🖑 🍞 🖽 🚺 🙆 🚳		DS

Figura 22: Adimensionalización del perfil con la cuerda.

Este proceso debemos hacerlo para todos los puntos del perfil lo que nos llevaría bastante tiempo. Para solucionar esto podemos crear una función en "Matlab" para que cree una serie de frases en las que el único cambio sería el número de la cota y estas frases pegarlas en el módulo "Knowledgeware" y así realizar este proceso de forma instantánea. Veamos el procedimiento:

- Creamos las cotas de todos los puntos del perfil. Es importante que se creen en el mismo orden en el que se recorren los puntos del perfil en los datos que hemos obtenido de la página "http://www.airfoiltools.com", es decir, en sentido anti-horario desde el borde de salida. Para realizar esta tarea es aconsejable que se cree un acceso rápido en el teclado para le herramienta "Constraint" ya que se usará bastante. Esto puede hacerse en "Tools", "Customize", pestaña de "Commands", abajo "All Commands", buscamos a la derecha "Constraint" y pulsando "Show Properties" podemos asociarle una combinación de teclas. El resultado de crear todas las cotas puede verse en la figura 23.
- Vamos al módulo "Knowledge Advisor", creamos una nueva regla y formamos la fórmula de la primera cota y la copiamos, como puede verse en la figura 23. Esto nos servirá de base para crear todas las frases que necesitamos.

Start ENOVIA V5 VPM <u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>I</u> nsert <u>T</u> ools <u>W</u> indow	CA <u>H</u> elp	TIA V5 - [Simetrico]				-	
Simetrico y plane y plane y plane parameters Conductions PartBody PartBody Constraints				アイレー アイレー アイレー アイレー アー ア	Rule Editor : Rule	Line Line Espesor 3000r	? × MR → D / 2 MR → D / 2 Apply @ Cance	
] 🗋 🗃 🖬 🖨 🗶 🛅 🖏 🕫 🤍	. 😭 🗴 foo 🗩 🕈 🔳 📲 🦓 🖏 🗄	9 🕂 🕫 🍳 🍳 🏄 🖬 🗂 🛢 🗷 🧟						Pa

Figura 23: Acotación de todos los puntos y recuadro de nueva "Rule"

• Creamos una función en "Matlab" con el código de la figura 24, donde hemos pegado la frase anterior y la hemos transformado según viene explicado en dicho código, obteniendo como resultado una serie de frases, que no son más que las cotas en longitud de los puntos del perfil igualadas al valor correspondiente adimensionalizado con la cuerda en función de la coordenada en x que tenga. Esta lista puede verse en la figura 24. El código anterior hace uso de la variable perfilx que la hemos creado usando la opción "Import" de "Matlab", seleccionando el archivo "GSD_PointSplineLoftFromExcel.xls" donde ya teníamos los puntos. El código se realizó con la ayuda de José María Melendez López.

1	% Frase en cuestión		_
2 -	<pre>f1 = 'PartBody\Sketch.1\Offset.numerocota\Offset = coordx/1*Cuerda';</pre>	Command Window	\odot
3	%dejamos únicamente lo que será constante y ponemos nombre representativos	PartBody/Sketch.1/Offset.23/Offset = 0.7430/1*Cuerda	^
4	<pre>%a lo que va a cambiar, en este caso el numero de la cota (numerocota) y la</pre>	PartBody\Sketch.1\Offset.24\Offset = 0.7216/1*Cuerda	
5	%coordenada x del perfil (coordx)	PartBody\Sketch.1\Offset.25\Offset = 0.6997/1*Cuerda	
6		PartBody\Sketch.1\Offset.26\Offset = 0.6773/1*Cuerda	
7	% Arreglar caracteres conflictivos con fprintf	PartBody/Sketch.1/Offset.27/Offset = 0.6545/1*Cuerda	
8 -	<pre>f2 = strrep(f1, '\', '\\'); % función que sustituye en f1 los \ por \\ ya</pre>	PartBody\Sketch.1\Offset.28\Offset = 0.6314/1*Cuerda	
9	%que la función fprintf usa el comando \ para establecer propiedades como	PartBody\Sketch.1\Offset.29\Offset = 0.6079/1*Cuerda	
LO	%el salto de linea (\n)	PartBody\Sketch.1\Offset.30\Offset = 0.5842/1*Cuerda	
11		PartBody\Sketch.1\Offset.31\Offset = 0.5603/1*Cuerda	
12	% Sustituir en la cadena los elementos que van a variar por %1.0f o %1.4f	PartBody\Sketch.1\Offset.32\Offset = 0.5362/1*Cuerda	
L3	% (en función de si es una cota (0 decimales) o es una valor de la	PartBody\Sketch.1\Offset.33\Offset = 0.5121/1*Cuerda	
L4	<pre>%coordenada (4 decimales)) que es lo que la función fprintf cambiará por lo</pre>	PartBody\Sketch.1\Offset.34\Offset = 0.4879/1*Cuerda	
15	%que sea necesario.	PartBody\Sketch.1\Offset.35\Offset = 0.4638/1*Cuerda	
16 -	t1 = '%1.0f'; t2 = '%1.4f';	PartBody\Sketch.1\Offset.36\Offset = 0.4397/1*Cuerda	
L7 -	<pre>f3 = strrep(f2, 'numerocota', t1);</pre>	PartBody\Sketch.1\Offset.37\Offset = 0.4158/1*Cuerda	
LB —	<pre>f4 = strrep(f3, 'coordx', t2);</pre>	PartBody\Sketch.1\Offset.38\Offset = 0.3921/1*Cuerda	
19		PartBody\Sketch.1\Offset.39\Offset = 0.3686/1*Cuerda	
20	% DATOS	PartBody\Sketch.1\Offset.40\Offset = 0.3455/1*Cuerda	
21	% valores por los que deben ser sustituidos los valores por defecto	PartBody\Sketch.1\Offset.41\Offset = 0.3227/1*Cuerda	
22	% anteriores	PartBody\Sketch.1\Offset.42\Offset = 0.3003/1*Cuerda	
23		PartBody\Sketch.1\Offset.43\Offset = 0.2784/1*Cuerda	
24	% el valor numerocota queremos que vaya desde 1 hasta el 65 que es el	PartBody\Sketch.1\Offset.44\Offset = 0.2570/1*Cuerda	
25	%número de la última cota que hemos colocado en catia	PartBody\Sketch.1\Offset.45\Offset = 0.2362/1*Cuerda	
26		PartBody\Sketch.1\Offset.46\Offset = 0.2160/1*Cuerda	
27	% el valor de las coordenadas en x esta en perfilx, esta recorrido en	PartBody\Sketch.1\Offset.47\Offset = 0.1964/1*Cuerda	
28	% sentido antihoratio desde el borde de salida.	PartBody\Sketch.1\Offset.48\Offset = 0.1776/1*Cuerda	
29		PartBody\Sketch.1\Offset.49\Offset = 0.1595/1*Cuerda	
30	%el orden de la numeración de las cotas debe coincidir con el orden en el	PartBody\Sketch.1\Offset.50\Offset = 0.1422/1*Cuerda	
31	%que se recorre el perfil	PartBody\Sketch.1\Offset.51\Offset = 0.1257/1*Cuerda	
32 -	<pre>numerocota=1:65; coordx=perfilx;</pre>	PartBody\Sketch.1\Offset.52\Offset = 0.1102/1*Cuerda	
33		PartBody\Sketch.1\Offset.53\Offset = 0.0955/1*Cuerda	
34	% Mostrar en pantalla	PartBody\Sketch.1\Offset.54\Offset = 0.0818/1*Cuerda	
35 -	<pre>fprintf('\n')</pre>	PartBody\Sketch.1\Offset.55\Offset = 0.0690/1*Cuerda	
36 -	for k = 1:length(coordx);	PartBody\Sketch.1\Offset.56\Offset = 0.0573/1*Cuerda	
37 -	C = [numerocota(k), coordx(k)];	PartBody\Sketch.1\Offset.57\Offset = 0.0466/1*Cuerda	
38	% vector que contiene los carácteres ordenados que se van a sustituir	PartBody\Sketch.1\Offset.58\Offset = 0.0369/1*Cuerda	
39	<pre>%en la frase, primero se pondrá el numero de la cora que corresponda y</pre>	PartBody\Sketch.1\Offset.59\Offset = 0.0283/1*Cuerda	
10	<pre>%luego el valor de la coordenada al que corresponde.</pre>	PartBody\Sketch.1\Offset.60\Offset = 0.0209/1*Cuerda	
11 -	fprintf([f4 , ' \n'], C)	PartBody\Sketch.1\Offset.61\Offset = 0.0145/1*Cuerda	
12 -	- end	PartBody\Sketch.1\Offset.62\Offset = 0.0093/1*Cuerda	
		PartBody/Sketch.1/Offset.63/Offset = 0.0052/1*Cuerda	
		Partbody/Sketch.1/Offset.64/Offset = 0.0023/1*Cuerda	
		PartBody\Sketch.i\Oriset.es\Oriset = 0.0006/1*Cuerda	
		/# >>	÷.

Figura 24: Código "Matlab" y resultado del mismo para las cotas en longitud.

• Una vez hecho esto, copiamos el resultado de "Matlab" y lo pegamos en el cuadro de programación de la "Rule" que estábamos creando y pulsamos "Apply" y "OK", como puede verse en la figura 25.

Figura 25: Código pegado en la nueva "Rule"

Realizamos este mismo proceso para las cotas en altura, los detalles se pueden ver en la figura 26. El resultado final para distintos valores de cuerda y espesor puede en las figuras 27 y 28.

43		Command Window
44		
45		PartBody\Sketch.1\Offset.90\Offset = 0.0323/0.06*Espesor
40	• Prove of an encoded	PartBody\Sketch.1\Offset.91\Offset = 0.0345/0.06*Espesor
4/	* Frase en cuestion	PartBody\Sketch.1\Offset.92\Offset = 0.0367/0.06*Espesor
48 -	<pre>FI = 'PartBody\Sketch.i\OFFset.numerocota\OFFset = coordy/0.06*Lspesor';</pre>	PartBody\Sketch.1\Offset.93\Offset = 0.0388/0.06*Espesor
49	<pre>%dejamos unicamente lo que sera constante y ponemos nombre representativos</pre>	PartBody\Sketch.1\Offset.94\Offset = 0.0409/0.06*Espesor
50	%a lo que va a cambiar, en este caso el numero de la cota (numerocota) y la	PartBody\Sketch.1\Offset.95\Offset = 0.0430/0.06*Espesor
51	<pre>%coordenada y del perfil (coordy)</pre>	PartBody\Sketch.1\Offset.96\Offset = 0.0450/0.06*Espesor
52		PartBody\Sketch.1\Offset.97\Offset = 0.0469/0.06*Espesor
53	% Arreglar caracteres conflictivos con fprintf	PartBody\Sketch.1\Offset.98\Offset = 0.0488/0.06*Espesor
54 -	<pre>f2 = strrep(f1, '\', '\'); % función que sustituye en f1 los \ por \\ ya</pre>	PartBody\Sketch.1\Offset.99\Offset = 0.0505/0.06*Espesor
55	%que la función fprintf usa el comando \ para establecer propiedades como	PartBody\Sketch.1\Offset.100\Offset = 0.0522/0.06*Espesor
56	%el salto de linea (\n)	PartBody\Sketch.1\Offset.101\Offset = 0.0537/0.06*Espesor
57		PartBody\Sketch.1\Offset.102\Offset = 0.0551/0.06*Espesor
58	% Sustituir en la cadena los elementos que van a variar por %1.0f o %1.4f	PartBody\Sketch.1\Offset.103\Offset = 0.0563/0.06*Espesor
59	% (en función de si es una cota (0 decimales) o es una valor de la	PartBody\Sketch.1\Offset.104\Offset = 0.0574/0.06*Espesor
60	%coordenada (4 decimales)) que es lo que la función fprintf cambiará por lo	PartBody\Sketch.1\Offset.105\Offset = 0.0583/0.06*Espesor
61	%que sea necesario.	PartBody\Sketch.1\Offset.106\Offset = 0.0590/0.06*Espesor
62 -	t1 = '\$1.0f'; t2 = '\$1.4f';	PartBody\Sketch.1\Offset.107\Offset = 0.0596/0.06*Espesor
63 -	<pre>f3 = strrep(f2, 'numerocota', t1);</pre>	PartBody\Sketch.1\Offset.108\Offset = 0.0599/0.06*Espesor
64 -	<pre>f4 = strrep(f3, 'coordy', t2);</pre>	PartBody\Sketch.1\Offset.109\Offset = 0.0600/0.06*Espesor
65		PartBody\Sketch.1\Offset.110\Offset = 0.0599/0.06*Espesor
66	% DATOS	PartBody\Sketch.1\Offset.111\Offset = 0.0596/0.06*Espesor
67	% valores por los que deben ser sustituidos los valores por defecto	PartBody\Sketch.1\Offset.112\Offset = 0.0590/0.06*Espesor
68	<pre>% anteriores</pre>	PartBody\Sketch.1\Offset.113\Offset = 0.0582/0.06*Espesor
69		PartBody\Sketch.1\Offset.114\Offset = 0.0572/0.06*Espesor
70	% el valor numerocota queremos que vaya desde 68 hasta el 132 que es el	PartBody\Sketch.1\Offset.115\Offset = 0.0559/0.06*Espesor
71	% número de la última cota que hemos colocado en catia	PartBody\Sketch.1\Offset.116\Offset = 0.0544/0.06*Espesor
72		PartBody\Sketch.1\Offset.117\Offset = 0.0526/0.06*Espesor
73	% el valor de las coordenadas en y esta en perfily, esta recorrido en	PartBody\Sketch.1\Offset.118\Offset = 0.0507/0.06*Espesor
74	% sentido antihoratio desde el borde de salida.	PartBody\Sketch.1\Offset.119\Offset = 0.0485/0.06*Espesor
75		PartBody\Sketch.1\Offset.120\Offset = 0.0460/0.06*Espesor
76	%el orden de la numeración de las cotas debe coincidir con el orden en el	PartBody\Sketch.1\Offset.121\Offset = 0.0434/0.06*Espesor
77	%que se recorre el perfil	PartBody\Sketch.1\Offset.122\Offset = 0.0406/0.06*Espesor
78 -	numerocota=68:132; coordy=perfily;	PartBody\Sketch.1\Offset.123\Offset = 0.0376/0.06*Espesor
79		PartBody\Sketch.1\Offset.124\Offset = 0.0345/0.06*Espesor
80	% Mostrar en pantalla	PartBody\Sketch.1\Offset.125\Offset = 0.0312/0.06*Espesor
81 -	<pre>fprintf('\n')</pre>	PartBody\Sketch.1\Offset.126\Offset = 0.0277/0.06*Espesor
82 -	for k = 1:length(coordy);	PartBody\Sketch.1\Offset.127\Offset = 0.0241/0.06*Espesor
83 -	C = [numerocota(k), coordy(k)];	PartBody\Sketch.1\Offset.128\Offset = 0.0203/0.06*Espesor
84	% vector que contiene los carácteres ordenados que se van a sustituir	PartBody\Sketch.1\Offset.129\Offset = 0.0165/0.06*Espesor
85	%en la frase, primero se pondrá el numero de la cora que corresponda y	PartBody\Sketch.1\Offset.130\Offset = 0.0125/0.06*Espesor
86	%luego el valor de la coordenada al que corresponde.	PartBody\Sketch.1\Offset.131\Offset = 0.0084/0.06*Espesor
87 -	fprintf([f4 , ' \n'], C)	PartBody\Sketch.1\Offset.132\Offset = 0.0043/0.06*Espesor
88 -	L end	<u>友</u> >>

Figura 26: Código "Matlab" y resultado del mismo para las cotas en altitud.

Figura 27: Resultado de la parametrización del perfil simétrico con Cuerda=3000mm y Espesor=100mm.

Figura 28: Resultado de la parametrización del perfil simétrico con Cuerda=2000mm y Espesor=300mm.

Nótese que estos perfiles no son ningún NACA simétrico en concreto, ya que hemos permitido que cambien de forma no proporcional el espesor y la cuerda. El caso de parametrizar un perfil NACA en función de sus dígitos (por ejemplo el NACA 0012 o 4412) lo veremos en la siguiente sección. Lo único que restaría para tener el perfil completo sería unir todos los puntos mediante un "Spline".

Este proceso se puede hacer para cualquier perfil NACA aunque no sea simétrico. Siempre y cuando el perfil no

cambie, este procedimiento es muy útil. Sin embargo, si aun, en el diseño, no está elegido el perfil y se desea parametrizar cualquier perfil de una familia, ya no podemos seguir este procedimiento, si no que tenemos que incorporar en "Catia" las ecuaciones de la familia del perfil. En la siguiente sección vemos cómo.

Los códigos de "Matlab" y archivos de "Catia" usados en este ejemplo están adjuntos al documento.

5. Parametrización de un perfil cualquiera de la familia NACA de 4 dígitos.

Un perfil NACA de 4 dígitos está definido mediante las fórmulas 1 y 2.

$$x_U = x - y_t sen\theta, \ y_U = y_c + y_t cos\theta \tag{1}$$

$$x_L = x + y_t sen\theta, \ y_L = y_c - y_t cos\theta \tag{2}$$

Donde x_U es la posición en el eje horizontal de los puntos del perfil en el extradós, y_U es la posición en el eje vertical de los puntos del perfil en el extradós, x_L es la posición en el eje horizontal de los puntos del perfil en el intradós, y_L es la posición en el eje vertical de los puntos del perfil en el intradós, x_L es la posición en el eje horizontal de los puntos del perfil en el intradós, x_L es la posición en el eje horizontal de los puntos del perfil en el intradós, y_L es la posición en el eje vertical de los puntos del perfil en el intradós, x es una variable independiente en la dirección del eje horizontal que va de 0 a la cuerda, y_t viene dado por la fórmula 3, θ viene dado por la fórmula 5 e y_c viene dado por la fórmula 4.

$$y_t = \frac{t}{0.2} c \left[0.2969 \sqrt{\frac{x}{c}} - 0.1260 \frac{x}{c} - 0.3516 \left(\frac{x}{c}\right)^2 + 0.2843 \left(\frac{x}{c}\right)^3 - 0.1015 \left(\frac{x}{c}\right)^4 \right],\tag{3}$$

donde t es igual a los dos últimos dígitos del perfil partidos por 100 y c es la cuerda.

$$y_{c} = \begin{cases} m \frac{x}{p^{2}} \left(2p - \frac{x}{c} \right) & 0 \le x \le pc \\ m \frac{c - x}{(1 - p)^{2}} \left(1 + \frac{x}{c} - 2p \right) & pc \le x \le c \end{cases},$$
(4)

donde m es el primer dígito partido por 100 y p es el segundo dígito partido por 10.

$$\theta = \arctan\left(\frac{dy_c}{dx}\right).\tag{5}$$

Por lo tanto las expresiones finales que definen el perfil NACA de 4 dígitos son:

$$x_{U} = \begin{cases} x - \frac{t}{0,2}c \left[0,2969\sqrt{\frac{x}{c}} - 0,1260\frac{x}{c} - 0,3516\left(\frac{x}{c}\right)^{2} + 0,2843\left(\frac{x}{c}\right)^{3} - 0,1015\left(\frac{x}{c}\right)^{4} \right] sen \left[\arctan\left(\frac{2m}{p^{2}}\left(p - \frac{x}{c}\right) \right) \right] & 0 \le x \le pc \\ x - \frac{t}{0,2}c \left[0,2969\sqrt{\frac{x}{c}} - 0,1260\frac{x}{c} - 0,3516\left(\frac{x}{c}\right)^{2} + 0,2843\left(\frac{x}{c}\right)^{3} - 0,1015\left(\frac{x}{c}\right)^{4} \right] sen \left[\arctan\left(\frac{2m}{p^{2}}\left(p - \frac{x}{c}\right) \right) \right] & pc \le x \le c \end{cases}$$
(6)

$$y_{U} = \begin{cases} m \frac{x}{p^{2}} \left(2p - \frac{x}{c}\right) + \frac{t}{0.2} c \left[0.2969 \sqrt{\frac{x}{c}} - 0.1260 \frac{x}{c} - 0.3516 \left(\frac{x}{c}\right)^{2} + 0.2843 \left(\frac{x}{c}\right)^{3} - 0.1015 \left(\frac{x}{c}\right)^{4}\right] cos \left[\arctan\left(\frac{2m}{p^{2}} \left(p - \frac{x}{c}\right)\right)\right] & 0 \le x \le pc \\ m \frac{c - x}{(1 - p)^{2}} \left(1 + \frac{x}{c} - 2p\right) + \frac{t}{0.2} c \left[0.2969 \sqrt{\frac{x}{c}} - 0.1260 \frac{x}{c} - 0.3516 \left(\frac{x}{c}\right)^{2} + 0.2843 \left(\frac{x}{c}\right)^{3} - 0.1015 \left(\frac{x}{c}\right)^{4}\right] cos \left[\arctan\left(\frac{2m}{p^{2}} \left(p - \frac{x}{c}\right)\right)\right] & pc \le x \le pc \end{cases}$$

$$(7)$$

$$x_{L} = \begin{cases} x + \frac{t}{0.2}c \left[0.2969\sqrt{\frac{x}{c}} - 0.1260\frac{x}{c} - 0.3516\left(\frac{x}{c}\right)^{2} + 0.2843\left(\frac{x}{c}\right)^{3} - 0.1015\left(\frac{x}{c}\right)^{4} \right] sen \left[\arctan\left(\frac{2m}{p^{2}}\left(p - \frac{x}{c}\right)\right) \right] & 0 \le x \le pc \\ x + \frac{t}{0.2}c \left[0.2969\sqrt{\frac{x}{c}} - 0.1260\frac{x}{c} - 0.3516\left(\frac{x}{c}\right)^{2} + 0.2843\left(\frac{x}{c}\right)^{3} - 0.1015\left(\frac{x}{c}\right)^{4} \right] sen \left[\arctan\left(\frac{2m}{(1-p)^{2}}\left(p - \frac{x}{c}\right)\right) \right] & pc \le x \le c \end{cases}$$
(8)

$$y_{L} = \begin{cases} m \frac{x}{p^{2}} \left(2p - \frac{x}{c}\right) - \frac{t}{0,2} c \left[0.2969 \sqrt{\frac{x}{c}} - 0.1260 \frac{x}{c} - 0.3516 \left(\frac{x}{c}\right)^{2} + 0.2843 \left(\frac{x}{c}\right)^{3} - 0.1015 \left(\frac{x}{c}\right)^{4}\right] cos \left[\arctan\left(\frac{2m}{p^{2}} \left(p - \frac{x}{c}\right)\right)\right] & 0 \le x \le pc \\ m \frac{c - x}{(1 - p)^{2}} \left(1 + \frac{x}{c} - 2p\right) - \frac{t}{0,2} c \left[0.2969 \sqrt{\frac{x}{c}} - 0.1260 \frac{x}{c} - 0.3516 \left(\frac{x}{c}\right)^{2} + 0.2843 \left(\frac{x}{c}\right)^{3} - 0.1015 \left(\frac{x}{c}\right)^{4}\right] cos \left[\arctan\left(\frac{2m}{p^{2}} \left(p - \frac{x}{c}\right)\right)\right] & pc \le x \le pc \end{cases}$$
(9)

Nótose que con éste método no es necesario importar los puntos del perfil a "Catia", ya que vamos a usar las ecuaciones que los definen.

Teniendo estas expresiones podemos realizar el siguiente proceso para incluirlas en el módulo "Knowledge Advisor":

Creamos un nuevo "Part" y creamos 4 parámetros: NACA1, NACA2, NACA34 y Cuerda, que serán respectivamente el primer dígito del perfil NACA, el segundo dígito del perfil NACA, los dos últimos dígitos del perfil NACA y la cuerda del perfil. Esta vez los parámetros serán de tipo real y no longitudes, ya que al realizar las operaciones obtendremos errores al intentar igualar elementos de distinta dimensión. Podemos ver los parámetros en la figura 29.

Start ENOVIA VS VPM Elle Edit View Insert Iools Window Help	CATIA V5 - [NACA4digitos.CATPart]	- - ×
x NACA4digitos → xy plane → yz plane → zy plane	Formulas: Parameters ? ×	
AccAst=9 AcCAst=9 AcCAst=12 AcCAst=12	Import. Filter On Parameters Filter Name: Filter Name: Filter Type : All Oouble click on a parameter to edit it Parameter NACA1 9 NACA2 7 NACA34 12 Cuerda 3000	
	Edit name or value of the current parameter Cuerda 3000 New Parameter of type Real With Single Value Add Formula Delete Parameter Delete Formula OK Apply Cancel	
「 「 遼 「 ② ①	⋡⋧ <mark>∶⋻⇔∎⋺</mark> ⊁⋻⋸⋪⋰⋎ <mark>⋰⋈</mark> ⋟∊∎⋠⋞⊪⋼⋈⋸⋪⋻⋞⋞ ⋺ ∎⋳⋶	

Figura 29: Parámetros para el perfil NACA de 4 dígitos.

• Creamos dos líneas de puntos, que van a ser el extradós y el intradós de nuestro perfil NACA de 4 dígitos. Hemos creado 60 puntos en total, para que se represente de manera fiel el contorno del perfil. Acotamos todos lo puntos en longitud y en altura, como puede verse en la figura 30. Vamos a crear y a acotar todos los puntos por encima del origen de coordenadas ya que hay algunos perfiles de la familia de 4 dígitos en los que su coordenada y_L cambia de signo, sin embargo una cota de "Catia" no puede tener valor negativo. Para arreglar esto, a la hora de asignar los valores a las cotas en y le sumaremos un offset para que siempre sean positivas y no ocurra este problema. El orden de las cotas ha sido el siguiente: de la 61 a la 90 las cotas en longitud de los puntos del extradós, de la 91 a la 120 las cotas en altura de los puntos del extradós, de la 121 a la 150 las cotas en ompiezan en el número 1 debido a que había otras 60 cotas anteriores que se eliminaron.

Figura 30: Cotas de todos los puntos del perfil.

 Vamos al módulo "Knowledge Advisor" y creamos una nueva "Rule". La línea de código que hemos usado es la siguiente:

Que no es más que la fórmula 6. En "Catia" la sintaxis de la sentencia condicional es la siguiente: If {condición} {instrucciones} else {instrucciones}, también hay que tener en cuenta que la potencia se escribe como **. La coordenada x va de 20 a 1000 y está adimensionalizada con la cuerda de forma que x/1000*Cuerda va de 20/1000*Cuerda hasta 1000/1000*Cuerda. Debemos dividir los elementos por 1000 ya que las unidades de los parámetros tipo variable real están en el SI y las cotas en mm.

• Esto deberíamos hacerlo para cada una de las cotas de los puntos. De este modo, esta frase la incluimos en un programa de "Matlab" similar al de la sección anterior, para crear una serie de frases en las que el valor 61 de la cota vaya de 61 hasta 90 y los valores de la x vayan de 20 a 1000 como viene explicado en el código de la figura 31. Las frases resultantes de dicho código puede verse en la misma figura.

		Command Window 💿
		>> NACR4
2	% Frase en cuestión	
3 -	<pre>f1 = 'If (x/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.numeroco</pre>	If (20/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.61\Offset = (20/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969*set
4	%dejamos únicamente lo que será constante y ponemos nombre representativos	If (40/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.62\Offset = (40/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969*sc
5	%a lo que va a cambiar, en este caso el numero de la cota (numerocota) y la	If (60/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.63\Offset = (60/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969*set
°	<pre>%coordenada x del perill (x) esta coordenada va de U a 1000, ya que nemos </pre>	If (80/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.64\Offset = (80/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969*set
	«decidido que así sea, pero podría estar en cualquier intervalo (de o a i	If (100/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.65\Offset = (100/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
å	spor ejempro).	If (136/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.66\Offset = (136/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
10	A hyperlay constance conflictions con fraintf	If (172/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.67\Offset = (172/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
11 -	<pre>f2 = etymen(f1 : !\\'). > función que sustituye en f1 los \ nor \\ va</pre>	If (208/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.68\Offset = (208/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
12	<pre>kgue la función forintf usa el comando \ para establecer propiedades como</pre>	If (244/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.69\Offset = (244/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
13	tel salto de linea (\n)	If (280/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.70\Offset = (280/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
14	()	If (316/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.71\Offset = (316/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
15	% Sustituir en la cadena los elementos que van a variar por %1.0f (ya que	If (352/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.72\Offset = (352/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
16	% ninguno de los valores va a tener decimales) que es lo que la función	If (388/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.73\Offset = (388/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
17	% fprintf cambiará por lo que sea necesario.	If (424/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.74\Offset = (424/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
18 -	t = '%1.0f';	If (460/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.75\Offset = (460/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
19 -	<pre>f3 = strrep(f2, 'numerocota', t);</pre>	If (496/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.76\Offset = (496/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
20 -	f4 = strrep(f3, 'x', t);	If (532/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.77\Offset = (532/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
21		If (568/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody/Sketch.1\Offset.78\Offset = (568/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
22	% valores por los que deben ser sustituidos los valores por defecto	If (604/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.79\Offset = (604/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
23	% anteriores	If (640/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.80\Offset = (640/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969*
24		If (676/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.81\Offset = (676/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
25	8 el valor numerocota queremos que vaya desde 61 nasta el 90 que es la Asumanión de las secondas de las secondas del secondas del secondas de las secondas	<pre>If (712/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.82\Offset = (712/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)</pre>
20	<numeración cotas="" de="" del="" en="" extrados="" las="" longitud="" los="" nemos<="" puntos="" que="" td=""><td><pre>If (748/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.83\Offset = (748/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)</pre></td></numeración>	<pre>If (748/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.83\Offset = (748/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)</pre>
20	scolocado en catla	If (784/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody\Sketch.1\Offset.84\Offset = (784/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
29	E el valor de las coordenadas en y hemos decidido que tença una division de	If (820/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody/Sketch.1\Offset.85\Offset = (820/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
30	20 en los 5 primeros puntos y 36 en los 25 siguiente, para que quede	If (856/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody(Sketch.1\Offset.86\Offset = (856/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
31	% meior definido el borde de atague, variando x entre 0 y 1000 gue era lo	If (892/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody(Sketch.1\Offset.87\Offset = (892/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
32	% que se pretendia	If (928/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody/Sketch.1\OFIset.88\OFIset = (928/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
33		IT (964/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody(Sketch.1\OTISet.9\OTISet = (964/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.2969)
34	%el orden de la numeración de las cotas debe coincidir con el orden en el	IT (1000/1000*Cuerda) <= (Cuerda*(NACA2/10)) PartBody/Sketch.1(Oriset.90/Oriset = (1000/1000*Cuerda -NACA34/(100*0.2)*Cuerda*(0.29)
35	%que se recorre el vector x	
36 -	numerocota=61:90; x=[20:20:100,136:36:1000];	
37		
38	% Mostrar en pantalla	
39 -	fprintf('\n')	
40 -	for $k = 1$:length(x);	
41 -	C = [x(k), numerocota(k), x(k) * ones(1, 7), numerocota(k), x(k) * ones(1, 7)];	
42	% vector que contiene los caracteres ordenados que se van a sustituir	
43	sen la frase. Hene un orden especial como puede verse primero aparece	
44	≥ia x, después numerocota, a continuación la x 7 veces etc.	<u>k</u> ~
45 -	<pre>iprintr([r4 , . \n.], c) ssustituye los %1.0f por los valores de C</pre>	
40 -	- ena	

Figura 31: Código "Matlab" y resultado del mismo para las cotas x_U .

• Pegamos las frases en el recuadro de programación de la "Rule".

Con esto ya tenemos la coordenada x_U parametrizada con el número del perfil NACA y con la cuerda. Hacemos lo mismo para las coordenadas y_U , $x_L e y_L$. Las líneas correspondientes a la primera cota de cada variable son las siguientes:

• Para y_U :

(x/1000*Cuerda) If (Cuerda*(NACA2/10))PartBody\Sketch.1\Offset.91\Offset $\leq =$ (Cuerda/10+((NACA1/100)*(x/1000*Cuerda)*(2*(NACA2/10)-x/1000)/(NACA2/10)**2) $0.1015^{*}(x/1000)^{**}4)^{*}\cos(\operatorname{atan}(2^{*}(\mathrm{NACA1}/100)/((\mathrm{NACA2}/10)^{**}2)^{*}((\mathrm{NACA2}/10)^{-}(x/1000)))))/1000$ el- $PartBody \\Sketch.1 \\Offset.91 \\Offset$ (Cuerda/10+((NACA1/100)*(Cuerda-x/1000*Cuerda)*(se = 2*(NACA2/10)+x/1000+1)/(1-NACA2/10)**2)+NACA34/(100*0.2)*Cuerda*(0.2969*sqrt(x/1000)- $0.1260^{*}(x/1000) - 0.3516^{*}(x/1000)^{**} + 0.2843^{*}(x/1000)^{**} - 0.1015^{*}(x/1000)^{**} + 0.2843^{*}(x/1000)^{**} - 0.000^{**} + 0.000^{*$ (NACA2/10))**2)*((NACA2/10)-(x/1000)))))/1000

Donde el valor de las cotas irá desde 91 hasta 120. Vemos que al valor inicial de la cota en altura le hemos añadido la cantidad Cuerda/10 para que todos los puntos estén elevados esa cantidad respecto del origen de coordenadas por el motivo antes comentado.

• Para x_L :

Donde el valor de las cotas irán desde 121 hasta 150.

• Para y_L :

If (x/1000*Cuerda) (Cuerda*(NACA2/10))PartBody\Sketch.1\Offset.151\Offset $\leq =$ (Cuerda/10+((NACA1/100)*(x/1000*Cuerda)*(2*(NACA2/10)-x/1000)/(NACA2/10)*2)) $NACA34/(100^{*}0.2)*Cuerda*(0.2969*sqrt(x/1000)-0.1260*(x/1000)-0.3516*(x/1000)*2+0.2843*(x/1000)*3-0.260*(x/1000)-0.3516*(x/1000)*2+0.2843*(x/1000)*3-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.3516*(x/1000)-0.260*(x/1000)-0.26$ $0.1015^{*}(x/1000)^{**4})^{*}\cos(atan(2^{*}(NACA1/100)/((NACA2/10)^{**2})^{*}((NACA2/10)-(x/1000)))))/1000$ el- \mathbf{se} PartBody\Sketch.1\Offset.151\Offset (Cuerda/10+((NACA1/100)*(Cuerda-x/1000*Cuerda)*(-2*(NACA2/10)+x/1000+1)/(1-NACA2/10)**2)-NACA34/(100*0.2)*Cuerda*(0.2969*sqrt(x/1000)- $0.1260^{*}(x/1000) - 0.3516^{*}(x/1000)^{**} + 0.2843^{*}(x/1000)^{**} - 0.1015^{*}(x/1000)^{**} + 0.2843^{*}(x/1000)^{**} - 0.000^{**} + 0.000^{*$ (NACA2/10))**2)*((NACA2/10)-(x/1000)))))/1000

Donde el valor de las cotas irán desde 151 hasta 180. Vemos que al valor inicial de la cota en altura le hemos añadido la cantidad Cuerda/10 para que todos los puntos estén elevados esa cantidad respecto del origen de coordenadas por el motivo antes comentado.

Una vez realizado todo el proceso e introducidas todas las frases en el recuadro de programación de la "Rule" pulsamos "Apply" y "OK". Solo nos falta crear el punto correspondiente al borde de ataque que estaría sobre el eje y y a una distancia en altura de Cuerda/10 mm. Una vez hecho esto vemos como podemos cambiar el valor de los parámetros para representar distintos tipos de perfil de la familia de 4 dígitos, aunque sean de forma tan exótica como el 9712. Podemos comprobar que hemos realizado correctamente el proceso verificando la forma del perfil con la herramienta "Airfoil plotter" de "www.airfoiltools.com". Podemos ver dos ejemplos en las figuras 32 y 33.

Figura 32: Representación del perfil NACA 6409 con 3 m de cuerda.

Figura 33: Representación del perfil NACA 9712 con 3 m de cuerda.

Los códigos de "Matlab" y archivos de "Catia" usados en este ejemplo están adjuntos al documento.

6. Parametrización de un ala con perfil NACA de 4 dígitos, flecha, diedro, torsión y estrechamiento.

Una vez realizada la parametrización del perfil NACA dibujar un ala completa parametrizada es sencillo, veamos el procedimiento:

- Partiremos del perfil creado en el ejemplo anterior. Creamos el parámetro Diedro y construimos un plano inclinado respecto a la horizontal con un ángulo igual a dicho parámetro, así podremos cambiar este valor y el plano cambiará de inclinación y con él todo el ala. Tenemos que cambiar el "Sketch Support" del perfil por un plano que sea perpendicular al anterior, para que el perfil también gire al cambiar el diedro. En la figura 34 se puede ver cómo queda el perfil.
- Creamos los parámetros Flecha y Semienvergadura y ayudándonos de estos construimos un línea que nos servirá de guía, como puede verse en la figura 35.
- Creamos un plano en el extremo de esa línea que sea paralelo al plano del "Sketch" del primer perfil. En este plano vamos a crear el perfil de la punta del ala. Seguimos el mismo procedimiento que para el perfil anterior, con la salvedad de que las líneas de referencia para colocar las cotas deben estar inclinadas un ángulo al que le asociaremos un parámetro llamado Torsión, de esta manera la línea de la cuerda del perfil estará inclinada un ángulo que podremos controlar con dicho parámetro, pudiendo así cambiar la torsión del ala. Hemos creado también los parámetros necesarios para la construcción del nuevo perfil: NACA1T, NACA2T, NACA34T y CuerdaT. En la figura 36puede verse el resultado de la acotación, nótese que la vista está girada. En la figura 37 puede verse el perfil de punta de ala parametrizado, donde se aprecia la inclinación respecto al anterior.
- Ya solo falta representar el ala mediante la opción "Multi-Sections Solid".

A veces es necesario parametrizar el ala con el área de referencia en lugar de con los parámetros que hemos escogido. Para tener en cuenta esto podemos crear un número parámetro que se llame AreaRef y poner, por ejemplo, el parámetro

Figura 34: Parametrización del diedro.

Figura 35: Parametrización de la semienvergadura y de la flecha.

averiguar

Figura 36: Acotación del perfil de punta de ala.

Figura 37: Posición relativa entre perfiles.

Figura 38: Construcción para hallar el valor del parámetro FlechaTrap

CuerdaT en función del primero (a los parámetros también se les puede asociar una fórmula), de manera que modificando el parámetro AreaRef el parámetro CuerdaT se ajusta automáticamente para satisfacer las restricciones. La fórmula 10 muestra la relación que existe entre estos parámetros.

$$CuerdaT = \frac{2}{Semienvergadura} \left(AreaRef - \frac{CuerdaR \cdot Semienvergadura}{2} \right)$$
(10)

Puede que el diseño de nuestro avión conduzca a un ala trapezoidal, con lo que habría que cambiar el parámetro Flecha a un valor en principio desconocido (se podría ir probando hasta que el ala tuviera una forma más o menos trapezoidal, pero no es una forma muy ortodoxa). Esto se puede solucionar creando un nuevo parámetro al que llamaremos FlechaTrap al cual le asociaremos el valor resultante de la cota de la flecha de la construcción de la figura 38, de esta manera tenemos disponible el valor que debería tener la flecha para que nuestra ala fuera trapezoidal, para hacer esto realidad solo tendríamos que asociarle a nuestro parámetro Flecha el valor del parámetro FlechaTrap.

El resultado final de la parametrización del ala con NACA 6412 en la raíz, NACA 9712 en la punta, 3m de cuerda en la raíz, 10° de diedro, 20° de flecha, 7m de semienvergadura, 20° de torsión y $15m^2$ de área de referencia puede verse en las figuras 39, 40 y 41.

Con las herramientas que hemos visto y con unos minutos más podemos construir la estructura interna del ala de forma parametrizada como puede verse en la figura 42.

Los códigos de "Matlab" y archivos de "Catia" usados en este ejemplo están adjuntos al documento.

Figura 39: Ala parametrizada en planta.

Figura 40: Ala parametrizada en alzado.

Figura 41: Ala parametrizada en perfil.

Figura 42: Estructura interna parametrizada.